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ABSTRACT

We implement removing micro-prosody with low-pass filtering
and avoiding Unvoiced/Voiced (U/V) prediction as part of a hybrid
approach to improve statistical excitation prediction in electrolaryn-
geal (EL) speech enhancement. An electrolarynx is a device that
artificially generates excitation sounds to enable laryngectomees to
produce EL speech. Although proficient laryngectomees can pro-
duce quite intelligible EL speech, it sounds very unnatural due to the
mechanical excitation produced by the device. Moreover, the excita-
tion sounds produced by the device often leak outside, adding noise
to EL speech. To address these issues, in our previous work, we pro-
posed a hybrid method using a noise reduction method for enhancing
spectral parameters and voice conversion method for predicting ex-
citation parameters. In this paper, we evaluate the effect of removing
micro-prosody with low-pass filtering and avoiding U/V prediction
in the hybrid enhancement process.

Index Terms— speaking aid, electrolaryngeal speech, hybrid
approach, statistical excitation prediction, unvoiced/voiced informa-
tion

1. INTRODUCTION

Speech is one of the most common media of human communication.
Unfortunately, there are many people with disabilities that prevent
them from producing speech freely, leading to communication bar-
riers. One example of people who cannot produce speech freely are
laryngectomees, who have undergone an operation to remove the lar-
ynx including the vocal folds for reasons such as an accident or la-
ryngeal cancer. Larengectomees cannot produce speech in the usual
manner because they no longer have their vocal folds. Electrolaryn-
geal (EL) speech is produced by one of the major alternative speak-
ing methods for laryngectomees as shown in Figure 1. EL speech
is produced using an electrolarynx, which is an electromechanical
vibrator that is typically held against the neck to mechanically gen-
erate artificial excitation signals. The generated excitation signals
are conducted into the speaker’s oral cavity, and EL speech is pro-
duced by articulating the conducted excitation signals. Compared
with other types of alaryngeal speech, EL speech is relatively intelli-
gible. However, the excitation sounds are usually emitted outside as
noise causing degradation of sound quality, and naturalness is very
low owing to its mechanical sound quality caused by the mechani-
cally generated excitation signals.

To address these issues of EL speech, two approaches have con-
ventionally been adopted. One is based on noise reduction [1] [2]
and the other is based on statistical voice conversion (VC) [3] [4].
The former approach aims to reduce the effect of the excitation
sounds leaked from the electrolarynx by using noise reduction tech-
niques, such as spectral subtraction (SS) [5]. This noise reduction
process causes no degradation in intelligibility but yields only small
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Fig. 1. Speech production mechanisms of non-disabled people (left
figure) and total laryngectomees (right figure).

improvements in naturalness as the mechanical excitation sounds
remain essentially unchanged. On the other hand, the latter method
is capable of significantly improving naturalness by converting
acoustic parameters of EL speech into those of natural voices using
statistical VC techniques [6] [7]. The use of statistics extracted from
a parallel data set consisting of EL speech and natural voices makes
it possible to achieve more complex conversion processes than those
of other signal processing approaches, such as formant manipula-
tion [8]. However, VC-based approaches usually cause degradation
in intelligibility owing to errors in conversion [4].

To significantly improve naturalness compared with EL speech
while preserving intelligibility, as a first step we proposed a hybrid
approach using SS-based noise reduction for enhancing spectral pa-
rameters and VC for predicting excitation parameters [9]. Although
laryngectomees cannot produce excitation sounds in the usual man-
ner, they can still articulate by changing the shape of their vocal tract.
Thus, there is not a large difference between spectral parameters of
natural speech and EL speech. On the other hand, the excitation
parameters of EL speech are highly unnatural owing to mechani-
cally generated excitation sounds, compared with those of natural
speech. In order to develop an EL speech enhancement method that
allows for the large improvements of naturalness realizable by VC
while ameliorating its adverse effects, we propose a hybrid approach
based on SS and VC. Moreover, to address the issue that modeling of
discontinuous F0 patterns is difficult [10], we also proposed the use
of continuous F0 pattern without any unvoiced frames to generate
the excitation signals [11]. However, compared with excitation pa-
rameters of the natural voice, excitation parameters of the enhanced
voice are still degraded owing to U/V prediction errors in the VC-
based enhancement process. In addition, we noticed that attempting
to model micro-prosody, rapid movements that cannot be modeled
accurately with a GMM, causes an adverse effect on model training.

In this paper we make two changes to the parameter generation
process to overcome these obstacles. First, we propose removing
micro-prosody to improve prediction accuracy. Second, to improve
prediction accuracy and reduce adverse effects caused by U/V pre-
diction errors, we improve and evaluate the continuous F0 method
we preliminarily proposed in [9]. We conduct an experimental eval-
uation, including dictation tests, preference tests, and objective test
of excitation parameter prediction.
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2. HYBRID APPROACH TO EL SPEECH ENHANCEMENT

The hybrid approach [9] adopts SS-based noise reduction for en-
hancing spectral parameters and VC method for predicting excita-
tion parameters, as shown in Figure 2.

SS [12] is a method for restoration of the amplitude spectrum
of a speech signal that has been observed with additive noise. In
this method, assuming that the additive noise signal is stationary,
the enhanced clean speech component |Ŝ(ω, t)| is extracted through
subtraction of the averaged amplitude spectrum of the noise |L̂(ω)|
from the amplitude spectrum of the noisy speech signal |Y (ω, t)| as
follows:

|Ŝ(ω, t)|γ =

{
|Y (ω, t)|γ − α|L̂(ω)|γ ( |L̂(ω)|γ

|Y (ω,t)|γ < 1
α )

0 (otherwise)
(1)

where ω is frequency, t is time frame, α (α > 1) is an over-
subtraction parameter, and γ is an exponential domain parameter.

VC [3] attempts to convert EL speech of laryngectomees into
normal speech of non-disabled speakers. It consists of training and
conversion processes. In training process, the conversion models are
constructed by using parallel data of EL speech and normal speech.
Let us assume the spectral segment features of EL speech Xt, ex-
tracted from ±C frames around current frame, and a static feature
vector yt of each type of the normal speech parameters at frame
t. As an output speech feature vector, we use Y t = [y⊤

t , ∆y⊤
t ]

⊤

consisting of the static and dynamic features, where ⊤ denotes trans-
position of the vector. We independently train GMMs to model the
joint probability densities [13] of the spectral segment feature of EL
speech and U/V information, log F0 values and aperiodic compo-
nents [14] of the output feature vectors of individual target param-
eters of normal speech using the corresponding joint feature vector
set as follows:

P (Xt,Y t|λ)

=
∑M

m=1 αmN
(
[X⊤

t ,Y
⊤
t ]

⊤;µ(X,Y )
m ,Σ(X,Y )

m

)
(2)

where N (·;µ,Σ) denotes a Gaussian distribution with a mean vec-
tor µ and a covariance matrix Σ. The mixture component index is
m. The total number of mixture components is M . The parameter
set of the GMM is λ, which consists of mixture-component weights
αm, mean vectors µ(X,Y )

m and full covariance matrices Σ(X,Y )
m for

individual mixture components. Note that the U/V information is
expressed by log F0 values at voiced frames and by ZERO values
at unvoiced frames. Log F0 values are values of continuous F0 pat-
terns generated by using spline interpolation to produce F0 values at
unvoiced frames.

In the conversion process, individual speech parameters of the
target normal speech are independently estimated from the spectral
segment features extracted from the EL speech using each of the
trained GMMs as follows:

ŷ = argmax
y

P (Y |X,λ) subject toY = Wy (3)

where X = [X⊤
1 , · · · ,X⊤

t , · · · ,X⊤
T ]

⊤, Y = [Y ⊤
1 , · · · ,Y ⊤

t ,
· · · , Y ⊤

T ]
⊤, and ŷ = [ŷ⊤

1 , · · · , ŷ⊤
t , · · · , ŷ⊤

T ]
⊤ are time sequence

vectors of the input spectral segment features, the output features,
and the converted static features of each target speech parameter over
an utterance, respectively. The matrix W is a transform to extend
the static feature vector sequence into the joint static and dynamic
feature vector sequence [15]. Note that the log F0 values of the en-
hanced voice are estimated based on U/V information predicted by
a GMM used for predicting U/V information. After estimating time
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Fig. 2. EL speech enhancement based on a hybrid approach.

sequences of the converted F0 and aperiodic components, a mixed
excitation signal is generated using the converted F0 and aperiodic
components [16]. Finally, the enhanced speech signal is synthesized
by filtering the generated excitation signal based VC with the param-
eterized spectral parameters enhanced by SS.

3. IMPROVEMENT OF STATISTICAL EXCITATION
PREDICTION

In addition to the overall hybrid framework, we propose two im-
provements to statistical excitation prediction in the enhancement
process.

3.1. Removing Micro-Prosody with Low-Pass Filter (LPF)

Rapid movements, called micro-prosody, are often observed in F0

patterns extracted from natural voices. However, it is difficult to ac-
curately model and reproduce these movements with a GMM. More-
over, the impact of micro-prosody on naturalness of synthetic speech
is much smaller than that of F0 patterns corresponding to phrase and
accentual components. Therefore, it is helpful to make the GMM
focus on modeling only these patterns. To achieve this, we propose
the use of a method to smooth the continuous F0 patterns with low-
pass filtering [17] as shown in the bottom of Figure 3. The smoothed
continuous F0 patterns are then modeled with the GMM.
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Fig. 3. Each type of F0 pattern. The top figure is a target F0 pattern,
the middle is a continuous F0 pattern using spline interpolation, and
the bottom is a continuous F0 pattern smoothed using the low-pass
filter (cut-off frequency = 10 Hz).

3.2. Avoiding U/V Prediction Errors

In the excitation parameter prediction, U/V information is also pre-
dicted as mentioned above. Errors during this prediction process are
also unavoidable and they may cause adverse effects in intelligibility.

As EL speech is totally voiced speech, no degradation is caused
even if the converted speech is generated by regarding all speech
frames as voiced frames. To further reduce the possibility of degra-
dation in intelligibility caused by U/V prediction errors, we also pro-
pose the use of continuous F0 patterns without any unvoiced frames
for speech segments to generate the excitation signals. In the conver-
sion process, continuous F0 patterns are predicted over all frames.
Then, only silence frames are automatically detected using wave-
form power and unvoiced excitation signals are generated only at
those frames. Unvoiced phoneme sounds cannot be generated in this
method, as in the original EL speech, but the converted speech does
not suffer from wrongly predicted unvoiced frames. Note that the
difference between this paper and [9] is a more comprehensive eval-
uation of the performance.

4. EXPERIMENTAL EVALUATIONS

4.1. Experimental Conditions

We conducted two objective tests for the excitation parameter pre-
diction, and as well as a subjective evaluation consisting of a dicta-
tion test on intelligibility and a preference test on naturalness. In our
experiments, the source speaker was one laryngectomee and the tar-
get speaker was one non-disabled speaker. Both speakers recorded
50 phoneme-balanced sentences. We conducted a 5-fold cross val-
idation test in which 40 utterance pairs were used for training, and
the remaining 10 utterance-pairs were used for evaluation. Sam-
pling frequency was set to 16 kHz. In the VC-based enhancement
methods, the 0th through 24th mel-cepstral coefficients extracted by
STRAIGHT analysis [18] were used as the spectral parameters. The
shift length was set to 5 ms. For the segment feature extraction, cur-
rent ± 4 frames were used. In the VC-based enhancement method,
the numbers of mixture components were set to 16 for the aperiodic
estimation, and the aperiodic distortion was 3.19 dB.

In the objective tests, we evaluated the effect of removing micro-
prosody with LPF for the training data. As measures to evaluate the
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Fig. 4. Relationship between cut-off frequency of LPF and F0 cor-
relation coefficients.

prediction accuracy of the excitation features, we used the correla-
tion coefficient and U/V error rate on F0 components between the
converted speech parameters and the natural target speech parame-
ters. Note that we set the cut-off frequency of LPF to 5 Hz, 10 Hz,
20 Hz, or 40 Hz, and also set the number of GMM mixture compo-
nents for F0 estimation and U/V prediction to 8, 16, 32, or 64.

In the dictation test, in order to demonstrate the effect of avoid-
ing U/V prediction errors on intelligibility, we evaluated the follow-
ing five types of speech samples:
EL original EL speech
SS speech enhanced by the SS-based enhancement method
Hybrid (V) speech enhanced by the proposed hybrid enhancement

method without U/V prediction
Hybrid (U/V) speech enhanced by the proposed hybrid enhance-

ment method with U/V prediction
Hybrid (target U/V) speech enhanced by the proposed hybrid en-

hancement method with ideal U/V information
where the proposed hybrid enhancement method was the method
based on SS+VC+CF0+LPF. As the ideal U/V information, we
used target U/V information obtained by performing DTW between
the enhanced speech parameters using the VC-based enhancement
method and the natural target speech parameters. Note that the VC-
based enhancement method generally causes a significant degrada-
tion (around 3% recognition rate reduction) in intelligibility com-
pared with EL speech as reported in [19]. In the preference test, in
order to demonstrate the effect of avoiding U/V prediction errors
on naturalness, we evaluated the following three types of speech
samples:
Hybrid (V)
Hybrid (U/V)
Hybrid (target U/V)
All tests were performed by 5 listeners. Each listener evaluated 10
samples per system. Note that, in these tests, we set the cut-off fre-
quency of LPF to 10 Hz, and the number of GMM mixture compo-
nents for F0 estimation and U/V prediction to 32.

4.2. Experimental Results

Figure 4 shows the result of the evaluation for changing cut-off fre-
quency of LPF to 5 Hz, 10 Hz, 20 Hz, or 40 Hz. We achieved an
improvement in the accuracy of F0 estimation, thanks to removing
micro-prosody. From the results, we can see that the optimal number
of GMM mixture components and cut-off frequency with LPF is 32
and 10 Hz, respectively. We can also see that rapid movements, such
as micro-prosody, caused degradation of the prediction accuracy at
more than 10 Hz.

4523



0

5

10

15

20

25

8 16 32 64 w/o U/V
prediction(Number of mixture components for U/V)

Er
ro

r o
f U

/V
 d

ec
is

io
n 

[%
]

V to U
U to V

Fig. 5. U/V error rate of each system.

100

(Source F0 pattern)

100

200

400 (Converted F0 pattern based on VC+CF0 w/ U/V prediction)

100

200

400

Fr
eq

ue
nc

y 
[H

z] (Converted F0 pattern based on VC+CF0+LPF w/ U/V prediction)

100

200

400 (Converted F0 pattern based on VC+CF0+LPF w/o U/V prediction)

0 1 2 3 4 5 6 7 8

100

200

400 (Target F0 pattern)

0 1 2 3 4 5
Time [s]

Fig. 6. Each type of F0 pattern.

Figure 5 shows the result of the evaluation for U/V error rate.
As the number of mixture components grows larger, V-to-U error
rate decreases while U-to-V increases. With 64 mixture components,
the U/V error rate is minimized. On the other hand, without U/V
prediction, the U/V error rate is constant. In particular, the V-to-U
error rate is practically zero. In actuality, the V-to-U errors still exist
with the continuous F0 estimation method owing to errors in the
automatic silence frame detection with waveform power, but they
are almost negligible. However, U-to-V errors significantly increase
in the continuous F0 estimation method. Note that as we mentioned
in Section 3.2, this increase causes no adverse effect compared with
EL speech because EL speech is totally voiced speech.

Figure 7 shows a result of the dictation test on intelligibility. We
found that the hybrid methods do not cause any degradation in in-
telligibility compared with EL speech. Furthermore, in the hybrid
method avoiding U/V prediction by using the continuous F0 estima-
tion method, the intelligibility is preserved, similarly to the hybrid
method using ideal U/V information. Hence, it can be said that U/V
prediction is not always required. On the other hand, the hybrid
methods tend to degrade intelligibility slightly compared to SS, ow-
ing to several issues, such as the effect of synthesis using a vocoder
and using 24-dimensional mel-cepstral coefficients as spectral fea-
tures. We show samples of F0 patterns in Figure 6

Figure 8 shows a result of the preference test on naturalness. We
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found that the avoiding U/V prediction in the hybrid methods does
not cause any degradation in naturalness compared with the use of
ideal U/V information in the hybrid methods. Therefore, we can
avoid the U/V prediction process without adverse effects. On the
other hand, we also found that the use of predicted U/V information
by VC-based method does not cause any degradation in naturalness
compared with the use of ideal U/V information in the hybrid meth-
ods. Due to the inconsistency between the excitation signal created
by the VC-based method and the spectral parameters created by the
SS-based method, when using ideal U/V information we observe no
clear improvement in naturalness, which is in contrast to the results
for the other method. Because EL speech is totally voiced, the spec-
tral parameters enhanced by the SS-based method are also entirely
voiced parameters. On the other hand, as for the generated excita-
tion signal based on VC-based method, because excitation param-
eters are predicted using statistics of normal speech, excitation pa-
rameters are voiced or unvoiced parameters. Hence, the use of ideal
U/V information in the hybrid methods does not perform well due to
the inconsistency between spectral parameters at voiced frames and
excitation parameters at unvoiced frames.

5. CONCLUSION

In this paper, we proposed a method of removing micro-prosody
with LPF as part of the hybrid approach to further improve the exci-
tation feature estimation. Moreover, we evaluate the effect of avoid-
ing U/V prediction errors that cause degradation in intelligibility.
As a result of an experimental evaluation, it has been demonstrated
that removing micro-prosody is capable of improving the excitation
feature estimation. Furthermore, in the hybrid method that avoids
U/V prediction, the intelligibility and naturalness is maintained to
the level of the hybrid method using ideal U/V information. Hence,
it can be said that U/V prediction is not always required in EL voice
enhancement.
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