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1 Introduction
To achieve high-quality speech enhancement,

noise reduction using a microphone array has been
widely studied. In recent years, we previously
proposed a BSSA [1] that consists of accurate
noise estimation by independent component anal-
ysis (ICA) [2] and the following speech extraction
procedure based on nonlinear noise reduction such
as spectral subtraction (SS). However, BSSA always
suffers from artificial distortion, so-called musical
noise, owing to nonlinear signal processing.
To solve this problem, we have proposed iterative

BSSA [3] consisting of dynamic noise estimation by
ICA and musical-noise-free iterative SS [4]. This
method can perform noise reduction with perfectly
no musical noise even with increasing the number
of iterations in SS, but instead always suffers from
speech distortion. Since speech distortion cannot be
measured without a clean reference speech signal,
we should have to decide the number of iterations
manually based on our auditory perception.
Recently, we have proposed a speech kurtosis ra-

tio (4th-order statistics) as a new unsupervised mea-
surement of speech distortion [5]. Therefore, in this
paper, first, we propose a new speech kurtosis esti-
mation method using the noise signal estimated by
ICA. Next, we propose an automatic control of the
number of iterations based on the speech kurtosis
ratio estimated using ICA in iterative BSSA.

2 Related Works
2.1 Musical-Noise-Free Iterative BSSA

In this section, we describe iterative BSSA that
can perform noise reduction with perfectly no mu-
sical noise in nonstationary noise (see Fig. 1). This
method consists of iterative blind dynamic noise es-
timation by ICA and musical-noise-free speech ex-
traction by modified iterative SS, where multiple it-
erative SS are applied to each channel while main-
taining the multi-channel property reused for ICA.
We conduct iterative BSSA in the following man-

ner, where the superscript [i] represents the value in
the ith iteration of SS (initially i = 0).
Step(I) The observed signal vector of the

K-channel array in the time-frequency domain,
x[0](f, τ), is given by

x[0](f, τ) = h(f)s(f, τ) + n(f, τ), (1)

where f denotes the frequency subband, τ is the
frame index, h(f) = [h1(f), h2(f) . . . , hK(f)]T is a
column vector of the transfer functions from the tar-
get signal position to each microphone, s(f, τ) is the
target speech signal, and n(f, τ) is a column vector
of the additive noise.

∗“Unsupervised control of speech quality based on higher-order statistics in musical-noise-free blind speech
extraction,”by Yuka Hirano, Ryoichi Miyazaki, Hiroshi Saruwatari, and Satoshi Nakamura (Nara Institute
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Fig. 1 Block diagram of iterative BSSA.

Step(II) We perform signal separation using ICA

o[i](f, τ) =W
[i]
ICA(f)x

[i](f, τ), (2)

W
[i][p+1]
ICA (f) =µ[I − ⟨φ(o[i](f, τ))(o[i](f, τ))H⟩τ ]

·W [i][p]
ICA (f) +W

[i][p]
ICA (f), (3)

where W
[i][p]
ICA (f) is a demixing matrix, µ is the step-

size parameter, [p] is used to express the value of
the pth step in the ICA iterations, I is the iden-
tity matrix, ⟨·⟩τ denotes a time-averaging operator,
and φ(·) is an appropriate nonlinear vector function.
Then, we construct a noise-only vector,

o
[i]
noise(f, τ) =[o

[i]
1 (f, τ), . . . , o

[i]
U−1, 0,

o
[i]
U+1(f, τ), . . . , o

[i]
K(f, τ)]T, (4)

where U is the signal number for speech, and we
apply the projection back operation to remove the
ambiguity of the amplitude and construct the esti-
mated noise signal, z[i](f, τ), as

z[i](f, τ) = W
[i]
ICA(f)

−1o
[i]
noise(f, τ). (5)

Step(III) We perform SS independently in each
input channel and derive the multiple target-speech-
enhanced signals. This procedure can be given by

x
[i+1]
k (f, τ) =
√

|x[i]
k (f, τ)|2−β|z[i]k (f, τ)|2 exp(j arg(x[i]

k (f, τ)))

(if |x[i]
k (f, τ)|2 > β|z[i]k (f, τ)|2)

ηx
[i]
k (f, τ) (otherwise)

,

(6)

where x
[i+1]
k (f, τ) is the target-speech-enhanced sig-

nal obtained by SS at a specific channel k, β is
the oversubtraction parameter, and η is the floor-
ing parameter. Then we return to step (II) with
x[i+1](f, τ). When we obtain sufficient noise reduc-
tion performance, we proceed to step (IV).
Step(IV) Finally, we obtain the resultant target-

speech-enhanced signal by applying DS to x[∗](f, τ),
where ∗ is the number of iterations after which suffi-
cient noise reduction performance is obtained. This
procedure is expressed by

y(f, τ) = wT
DS(f)x

[∗](f, τ), (7)

wDS(f) = [w
(DS)
1 (f), . . . , w

(DS)
K (f)], (8)

w
(DS)
k (f) =

1

K
exp(−2j(f/N)fsdk sin θU/c), (9)
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where y(f, τ) is the final output signal of iterative
BSSA, wDS is the filter coefficient vector of DS, N
is the DFT size, fs is the sampling frequency, dk is
the microphone position, c is the sound velocity, and
θU is the estimated direction of arrival of the target
speech [1]. Moreover, [A]lj represents the entry of
A in the lth row and jth column.
This method can generate almost no musical noise

even with increasing noise reduction, but instead al-
ways suffers from large speech distortion because of
no justification of applying ICA to such signals non-
linearly distorted by SS. Since speech distortion can-
not be measured without a clean reference speech
signal, we should have to decide the number of iter-
ations manually based on our auditory perception.

2.2 Unsupervised Measurement of Speech
Distortion

2.2.1 Speech Kurtosis Ratio

As an evaluation of speech distortion, cepstral dis-
tortion is widely used. However, cepstral distortion
cannot be measured without a clean reference speech
signal. To solve this problem, speech kurtosis ratio
was proposed as an unsupervised measurement of
speech distortion. The speech kurtosis ratio is ob-
tained as [5]

kurtsis ratio[s] = kurt[s]proc/kurt
[s]
org, (10)

where kurt
[s]
proc is the speech kurtosis after signal pro-

cessing and kurt
[s]
org is the speech kurtosis before sig-

nal processing. It is proved that the speech kurtosis
ratio is strongly correlated to cepstral distortion [5].

2.2.2 Speech Kurtosis Estimation Method

The observed signal in the time-frequency do-
main, x(f, τ), is given by x(f, τ) = s(f, τ)+n(f, τ).
Since the speech component is always contaminated
with noise at every time-frequency grid, it is difficult
to estimate the speech kurtosis via theoretical analy-
sis. Therefore, we inversely calculate the kurtosis of
the speech power spectrum in a data-driven manner,
utilizing two observable statistics of the noisy speech
signal x(f, τ) and noise signal n(f, τ) [5]. Note that
the proposed speech kurtosis estimation is an un-
supervised method because it requires no reference
(clean) speech signals, unlike cepstral distortion.
To cope with the mathematical problem that the

mixing of speech and noise is additive but generally
their higher-order moments are not additive, we in-
troduce the cumulant, which retains the additivity
for additive variables. Meanwhile, in the transfor-
mation from a waveform to its power spectrum, the
exponentiation operation is conducted. However,
the cumulant does not have a straightforward re-
lationship. In this case, we use the moment instead
of the cumulant. Thus, we previously proposed the
use of a moment-cumulant transformation [5]. In
moment-cumulant transformation, The mth-order
moment µm(x) can be written as

µm(x) =
∑
π(m)

∏
B∈π(m)

κ|B|(x), (11)

where π(m) runs through the list of all partitions
of a set of size m, B ∈ π(m) means that B is one
of the blocks into which the set is partitioned, and

|B| is the size of set B. In the same manner, the
mth-order cumulant κm(x) is given by

κm(x)=
∑
π(m)

(−1)|π(m)|−1(|π(m)|−1)!
∏

B∈π(m)

µ|B|(x).

(12)

Hereafter, when we define complex-valued variables
of the observed (noisy speech) signal, the original
speech signal, and the noise signal as (xR + ixI),
(sR + isI), and (nR + inI), in [5], the kurtosis of the
speech power spectrum is estimated from moment-
cumulant transformation, and the additivity of cu-
mulants, as

kurtspeech=
µ4(s

2
R + s2I )

µ2
2(s

2
R + s2I )

=
N (µm(xR), µm(nR))

D (µm(xR), µm(nR))
,

(13)

where

D (µm(xr), µm(xi), µm(nr), µm(ni))

=
[
µ4(xr)+µ4(xi)−µ4(nr)−µ4(ni)

+{2µ2(xi)−6µ2(nr)−2µ2(ni)}µ2(xr)

+{−2µ2(nr)−6µ2(ni)}µ2(xi)

+6µ2(nr)
2
+2µ2(ni)µ2(nr)+6µ2(ni)

2
]2
, (14)

N (µm(xr), µm(xi), µm(nr), µm(ni))

=µ8(xr)+µ8(xi)−µ8(nr)−µ8(ni)

+{4µ2(xi)−28µ2(nr)−4µ2(ni)}µ6(xr)

+{4µ2(xr)−4µ2(nr)−28µ2(ni)}µ6(xi)

+{−28µ2(xr)−4µ2(xi)

+56µ2(nr)+4µ2(ni)}µ6(nr)

+{−4µ2(xr)−28µ2(xi)

+4µ2(nr)+56µ2(ni)}µ6(ni)

+
[
6µ4(xi)−70µ4(nr)−6µ4(ni)+420µ2(nr)

2

+{−60µ2(nr)−36µ2(ni)}µ2(xi)

+60µ2(ni)µ2(nr)+36µ2(ni)
2
]
µ4(xr)

+
[
−6µ4(nr)−70µ4(ni)+36µ2(nr)

2

−{36µ2(nr)+60µ2(ni)}µ2(xr)

+60µ2(ni)µ2(nr)+420µ2(ni)
2
]
µ4(xi)

+70µ4(nr)
2
+µ4(nr)+70µ4(ni)

2
+µ4(ni)+µ2(xr)

−
{
360µ2(nr)

3
+216µ2(ni)µ2(nr)

2

+360µ2(ni)
2
µ2(nr)+2520µ2(ni)

3
}
µ2(xi)

+2520µ2(nr)
4
+360µ2(ni)µ2(nr)

3

+216µ2(ni)
2
µ2(nr)

2

+360µ2(ni)
3
µ2(nr)+2520µ2(ni)

4
. (15)

This method can estimate speech kurtosis with high
precision. However, if the noise signal estimated by
the speech absence part is short, this method cannot
work stably.
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Fig. 2 Block diagram of ICA-based kurtosis esti-
mation.

3 Proposed Method
3.1 Speech Kurtosis Estimation by ICA

The main problem in the conventional method is
the low robustness in the estimation of higher-order
statistics. In this method, it is necessary to calcu-
late up to eighth-order statistics. Since such higher-
order statistics are very sensitive to outliers, we can-
not estimate them stably from limited few samples
in speech absence part, causing considerable degra-
dation of estimated speech kurtosis. To solve this
problem, we propose a new speech kurtosis estima-
tion method using the noise signal estimated by ICA
instead of that in speech absence period (see Fig. 2).
ICA can dynamically estimate nonstationary noise
signal with great accuracy. By using the noise signal
estimated by ICA, we can obtain enough the noise
signal of length, and we can estimate higher-order
statistics stably from a sufficient number of samples.

3.2 Speech-Kurtosis-Based Quality Control

Since iterative BSSA can generate no musical
noise by keeping its higher-order statistics, it can be
assumed that the statistical quantity of the resid-
ual noise signal in iterative BSSA does not change
before/after processing. Therefore, we propose the
control method of the number of iterations in the
SS part using the speech kurtosis estimation method
described in Sect. 3.1.
In this method, first, we calculate speech kurtosis

before processing using the ICA-based noise estima-
tion. Next, as for the estimate of speech kurtosis
after processing, we can efficiently obtain it thanks
to the assumption of fixed noise statistics in musical-
noise-free properties.
The mth-order moment of noise signal n before

signal processing given by

µm(n) =

∫ ∞

0

nmP (n)dn, (16)

where P (n) is the probability density function of a
power-spectral-domain signal n. Since we consider
that the noise statistics after signal processing are
the same as that before signal processing, we calcu-
lated µm(n′) after signal processing as

µm(n′) =

∫ ∞

0

αmnmP (n)dn

= αmµm(n), (17)

where ∗′ is a signal after signal processing, and α
is a noise reduction rate, α = n′/n, which can be

estimated by speech absence part. We can estimate
speech kurtosis after signal processing using µm(n′)
and (13) as,

D (µm(x′
r), µm(x′

i), µm(n′
r), µm(n′

i))

=
[
µ4(x

′
r)+µ4(x

′
i)−α4{µ4(nr)+µ4(ni)}

+2
{
µ2(x

′
i)−3α2µ2(nr)−α2µ2(ni)

}
µ2(x

′
r)

−2α2{µ2(nr)+3µ2(ni)}µ2(x
′
i)

+2α4
{
6µ2(nr)

2+µ2(ni)µ2(nr)+3µ2(ni)
2
}]2

, (18)

N (µm(x′
r), µm(x′

i), µm(n′
r), µm(n′

i))

=µ8(x
′
r)+µ8(x

′
i)−α8µ8(nr)−α8µ8(ni)

+4
{
µ2(x

′
i)−7α2µ2(nr)−α2µ2(ni)

}
µ6(x

′
r)

+4
{
µ2(x

′
r)−α2µ2(nr)−7α2µ2(ni)

}
µ6(x

′
i)

+4α6
{
−7µ2(x

′
r)−µ2(x

′
i)+14α

2µ2(nr)+α
2µ2(ni)

}
µ6(nr)

+4α6
{
−µ2(x

′
r)−7µ2(x

′
i)+α

2µ2(nr)+14α
2µ2(ni)

}
µ6(ni)

+
[
6µ4(x

′
i)−70α4µ4(nr)−6α4µ4(ni)

−12α2{5µ2(nr)+3µ2(ni)}µ2(x
′
i)

+12α4
{
35µ2(nr)

2+5µ2(ni)µ2(nr)+3µ2(ni)
2
}]
µ4(x

′
r)

+
[
−α4{6µ4(nr)+70µ4(ni)}

−12α2{3µ2(nr)+5µ2(ni)}µ2(x
′
r)

+12α4
{
3µ2(nr)

2
+35µ2(ni)

2

+5µ2(ni)µ2(nr)}
]
µ4(x

′
i)

+70α8
{
µ4(nr)

2
+µ4(ni)

2
}

+α4 {µ4(nr)+µ4(ni)}+µ2(x
′
r)

+72α6
[
−5µ2(nr)

3−3µ2(ni)µ2(nr)
2

−5µ2(ni)
2
µ2(nr)−35µ2(ni)

3
]
µ2(x

′
i)

+72α8
[
35µ2(nr)

4
+5µ2(ni)µ2(nr)

3
+3µ2(ni)

2
µ2(nr)

2

+5µ2(ni)
3
µ2(nr)+35µ2(ni)

4
]
. (19)

This processing is advantageous because we can
omit the re-estimation process of noise kurtosis that
is difficult to estimate after nonlinear signal process-
ing like SS. Finally, based on the above-mentioned
estimates of speech kurtosis before/after processing,
we predict speech distortion and control the maxi-
mum number of iterations in iterative BSSA.

4 Evaluation Experiments
4.1 Speech Kurtosis Estimation

To confirm the effectiveness of the proposed the
speech kurtosis estimation method, we conducted
objective evaluation experiments. In this experi-
ment, the speech kurtosis estimated by the con-
ventional method and the proposed method were
compared. We used a two-element microphone ar-
ray with an interelement spacing of 2.15 cm, and
the direction of the target speech was set to be
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Fig. 3 Experimental result of speech kurtosis esti-
mation.
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Fig. 4 (a) Relation between number of iterations
and cepstral distortion, (b) Relation between num-
ber of iterations and speech kurtosis ratio in oracle
or estimated.

normal to the array. The size of the experimen-
tal room was 4.2× 3.5× 3.0 m3 and the reverbera-
tion time was approximately 200 ms. All the sig-
nals used in this experiment were sampled at 16
kHz with 16-bit accuracy. The observed signal con-
sisted of the target signal of one speaker (female)
and one real-recorded diffuse noise (railway station
noise) emitted from eight surrounding loudspeak-
ers. The input SNR was set to 0 dB. The FFT
size was 1024, and the frame shift length was 256.
The length of speech absent part was set to 0.5, 1.0,
3.0 or 5.0 s. We calculated the normalized error
of the estimates in the conventional and proposed
methods and compared the accuracy of speech kur-
tosis estimation. The normalized error is defined
as enorm = |kurtoracle − kurtspeech|/kurtoracle, where
kurtoracle is the power spectral kurtosis of the clean
speech signal and kurtspeech is the estimate of the
speech power spectral kurtosis.
The result is shown in Fig. 3. In the conventional

method, the normalized error increases as the data
length of the noise-only part decreases. In contrast,
since the proposed method can use sufficient data
length, the normalized error is lower in each case,
meaning that the proposed method can stably esti-
mate speech kurtosis with high accuracy compared
with the conventional method. Therefore, we can
confirm the validity of the proposed method.

4.2 Control in Iterative BSSA

We conducted objective evaluation experiments to
confirm the validity of the proposed method of con-
trol of the number of iterations in iterative BSSA.
In this experiment, we calculated cepstral distortion
and estimated speech kurtosis of the output signal
of iterative BSSA. The number of iterations in it-
erative BSSA was set to 1, 2, 3, 4 and 5, and the

results of each case were compared. Thus, we eval-
uated whether or not estimated speech kurtosis was
used as measure of speech distortion instead of cep-
stral distortion. We used a four-element microphone
array with an interelement spacing of 2.15 cm. The
input SNR was set to 5 dB. The noise reduction rate
was set to 10 dB. We used the noise signal estimated
by ICA as the noise signal before/after processing.
Other experimental conditions are the same as those
in the previous subsection.
The result is shown in Fig. 4. Figure 4 (a) shows

a relation between the number of iterations and cep-
stral distortion for the extracted speech in iterative
BSSA, and (b) shows a relation between the num-
ber of iterations and speech kurtosis ratio in oracle
or estimated by the proposed method. In Fig. 4,
both cepstral distortion and the estimated speech
kurtosis ratio increase as the number of iterations
increases. Thus, the speech kurtosis ratio is valid
for an unsupervised measurement of speech distor-
tion.
From this results, the number of iterations of it-

erative BSSA is controllable by limiting the value of
the speech kurtosis ratio within an allowable value
in human perception. Therefore, we can control
the number of iterations with a constraint on sound
quality degradation.

5 Conclusions
In this paper, we propose a new speech kurtosis

estimation method using the noise signal estimated
by ICA, and an automatic control of the number of
iterations in iterative BSSA. Experimental evalua-
tions confirmed the efficacy of the proposed meth-
ods.
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