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1 Introduction 

Hands-free automatic speech recognition 

(ASR) system provides more convenience and 

flexibility to the user under many conditions. 

However, the presence of background noise and 

room reverberation, particularly the late 

reverberation component, significantly degrade 

the speech recognition performance. Thus, array 

signal processing is required as the front-end for 

such a system.  

One of the microphone array processing 

techniques is frequency-domain blind source 

separation (FD-BSS), which separates signal 

components according to the statistical 

independence of each source, e.g., by using 

independent component analysis (ICA)
[1]

. 

FD-BSS does not require a priori information 

about the input signal; however, it cannot 

perform well in the presence of non-point source 

noise
[2]

. Frequency-domain blind signal 

extraction (FD-BSE)
[3]

 to effectively extracts 

speech from a mixture of speech and noise by 

utilizing the difference in sparseness between 

their modulus. However, the reverberation effect 

is not considered in this method. 

In this paper, we utilize a nonlinear 

postprocessing method to extend the capability of 

FD-BSE for dereverberation. We introduce the 

minimum mean-square error short-time spectral 

amplitude (MMSE-STSA) estimator
[4]

 and its 

generalized method
[5]

 to suppress the late 

reverberation component in addition to diffuse 

background noise. The related works are 

reviewed in the next section. In Section 3, we 

describe our proposed method including the 

optimization strategy. The experimental 

evaluation and a discussion of the results are 

given in Section 4, followed by conclusion in 

Section 5. 

2 Related Works 

2.1 Frequency-Domain Blind Signal 

Extraction 

The time-frequency domain model of the 

signal captured by a microphone array 𝑿(𝑓, 𝑘) 

at the fth frequency bin is given by  

𝑿(𝑓, 𝑘) = 𝑨(𝑓)𝒁(𝑓, 𝑘), 

where 𝑨(𝑓) is the mixing matrix. Without loss 

of generality, we may assume that the first-row 

component of 𝒁(𝑓, 𝑘)  is the contribution of 

speech and its reverberation 𝑿𝑆(𝑓, 𝑘), and the 

remainder is the contribution of diffuse noise 

𝑿𝑁(𝑓, 𝑘). We may also assume that the speech 

component is statistically independent of the 

noise component. 

In FD-BSE, the extracted output 𝑌(𝑓, 𝑘) is 

obtained by applying an extracting vector to the 

observed signal, as given by  

𝑌BSE(𝑓, 𝑘) = 𝐵(𝑓)𝑿(𝑓, 𝑘) 

                              = 𝐵(𝑓)𝑨(𝑓)𝒁(𝑓, 𝑘). 

The vector 𝐵(𝑓) is updated using the gradient 

descent method to minimize the cost function 

𝐽(𝐵(𝑓)) given by  

                   𝐽(𝐵(𝑓)) =
1

2
𝐸{|𝑌BSE(𝑓, 𝑘)|}

2, 

        𝐸{|𝑌BSE(𝑓, 𝑘)|
2} = 1. 

The speech modulus has a sparser distribution 

than the diffuse background noise as most of its 

values are close to zero and only a few are 

significantly large. Thus, the cost function 

becomes minimum when the target speech 

component is extracted. 

2.2 Generalized MMSE-STSA Estimator 

The generalized MMSE-STSA estimator is 

also referred to as MMSE estimation with 

optimizable speech model and inhomogeneous 

error criterion (MOSIE) estimator
[5]

. In MOSIE, 

the probability density function of the clean 

speech power spectrum is modeled by a chi 
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(11) 

distribution as 

 𝑝(𝑠) =  
2

Γ(𝜌)
(

𝜌

𝑃𝑆(𝑓)
)𝜌𝑠2𝜌−1 exp (−

𝜌

𝑃𝑆(𝑓)
𝑠2), 

where 𝜌 is the shape parameter of the speech 

model, 𝑃𝑆(𝑓)  is the mean of speech spectral 

amplitude, and Γ(𝑎)  is the complete Gamma 

function. Also, 𝜌 = 1  indicates a Gaussian 

speech signal
[4]

. In this paper, we employ 

0 < 𝜌 < 1 to model the speech power spectrum 

as a super-Gaussian signal. 

The MOSIE estimator is mainly used for 

single-channel noise suppression by applying the 

gain function 𝐺(𝑓, 𝑘), as given by 

𝑌MOSIE(𝑓, 𝑘) = 𝐺(𝑓, 𝑘)𝑋(𝑓, 𝑘), 

          𝐺(𝑓, 𝑘) =  
√𝜐(𝑓, 𝑘)

𝛾(𝑓, 𝑘)
. 

                              [
𝛾(𝜌+

𝛽

2
)

𝛾(𝜌)
.
Φ(1−𝜌−

𝛽

2
,1,−𝜐(𝑓,𝑘) 

Φ(1−𝜌,1,−𝜐(𝑓,𝑘))
]

1/𝛽

 

          𝜐(𝑓, 𝑘) =  
𝜉̂(𝑓,𝑘)

1+𝜉̂(𝑓,𝑘)
𝛾(𝑓, 𝑘), 

where Φ(𝑎, 𝑏, 𝑐) is the confluent hypergeometric 

function. 𝜉(𝑓, 𝑘) and 𝛾(𝑓, 𝑘) are the estimated 

a priori and a posteriori signal-to-noise ratio 

(SNR), respectively, as given by 

𝜉(𝑓, 𝑘) = α𝛾(𝑓, 𝑘 − 1)𝐺2(𝑓, 𝑘 − 1) +

                  (1 − 𝛼)max[𝛾(𝑓, 𝑘) − 1,0], 

  𝛾(𝑓, 𝑘) =
|𝑋(𝑓,𝑘)|2

|𝑋𝑁̂(𝑓,𝑘)|
2, 

where α  is the forgetting parameter in the 

decision-directed approach, and 𝛽  is the 

compression parameter of the error function 

given by 

e (𝑆𝑜(f, k), 𝑆𝑝(f, k)) = |𝑆𝑜(f, k)|
𝛽 − |𝑆𝑝(f, k)|

𝛽
, 

where 𝑆𝑜(f, k) and 𝑆𝑝(f, k) are the original and 

processed speech spectral amplitude, 

respectively. 

3 Proposed Joint Method 

The reverberant speech in the mixture in Eq. 

(1) is composed of clean speech with the room 

impulse response, as given by  

𝑋𝑆(𝑓, 𝑘) = 𝑋 (𝑓, 𝑘) + 𝑋 (𝑓, 𝑘) 

= 𝑆(𝑓, 𝑘)  (𝑓) + 𝑆(𝑓, 𝑘)  (𝑓), 

where   (𝑓) and   (𝑓) indicate the early and 

late room impulse responses, respectively. This is 

because the speech signal tends to loses its 

correlation after some delays, owing to its 

nonstationary characteristics. Therefore, the late 

reverberation component can be suppressed in the 

same manner as additive noise. 

3.1 Main Algorithm 

Assuming that the diffuse background noise 

has been suppressed effectively, the extracted 

component 𝑋𝑆̂(𝑓, 𝑘) will only consist of clean 

speech and its reverberation. First, we synthesize 

the late reverberation in the time domain by 

applying convolution according to Eq. (12). The 

late room impulse response is estimated by 

𝒉 (𝜏) = 𝑢(𝜏)𝑒−𝑑(𝜏−𝜏𝑑), 

𝑑 =
ln 106

2(𝑇60−𝜏𝑑)
, 

where 𝑢(𝜏) is a Gaussian random function, 𝜏𝑑 

is the cutoff time between early and late impulse 

responses, and 𝑇60 is the reverberation time. The 

clean speech estimate 𝑠̂( ) is approximated by 

projecting back 𝑋𝑆̂(𝑓, 𝑘)  to the truncated 

FD-BSE filter.   

Next, we will compare the performance of 

single-channel and multichannel MOSIE 

estimator postprocessing, as shown in Fig. 1 and 

Fig.2, respectively. Parametric postprocessing 

allows flexible control of the level of 

dereverberation. However, it is important to set 

the parameter to obtain the optimum output. In 

this paper, we only focus on optimizing the shape 

Figure 1 Block diagram of FD-BSE combined 

with single channel MOSIE estimator. 

Figure 2 Block diagram of FD-BSE combined 

with multichannel MOSIE estimator. 

(5) 

(6) 
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parameter 𝜌. Other parameters, such as 𝑇60, are 

assumed to be known. 

3.2 Optimization Scheme Based on Acoustic 

Likelihood 

Signal processing front-end in ASR system can 

only be expected to improve the recognition 

performance if it generates outputs that maximize 

the probability of the correct transcription relative 

to other possible candidates. Therefore, we can 

optimize the parameter of the front-end based on 

the likelihood in the acoustic model of ASR.  

In speech recognizer, a series of fixed size 

acoustic vectors 𝒐(𝜌) = [𝑜1, … , 𝑜𝑇] is extracted 

from the output of joint method with parameter 𝜌. 

During decoding, it attempts to hypothesize the 

word sequence 𝑾= [𝑤1 , … , 𝑤𝐾]  which is the 

most probable to generate the sequence 𝒐(𝜌), as 

stated by 

𝑾̂ =   arg max
𝑾

𝑃(𝑾|𝒐(𝜌)). 

However, the posterior probability 

𝑃(𝑾|𝒐(𝜌)) cannot be computed directly. Thus, 

Bayes’ theorem is applied, as given by 

𝑾̂ =   arg max
𝑾

𝑃(𝒐(𝜌)|𝑾)𝑃(𝑾)

𝑃(𝒐(𝜌))
. 

𝑃(𝒐(𝜌)|𝑾)  is the acoustic likelihood 

(acoustic score), representing the probability that 

feature sequence 𝒐 is observed given that word 

sequence 𝑾  was spoken, and 𝑃(𝑾)  is the 

language score, i.e., the a priori probability of a 

particular word sequence 𝑾.  

Since Eq. (16) is maximized with respect to 

the word sequence 𝑾  for a given observed 

sequence 𝒐 that is fixed, the denominator term 

𝑃(𝒐(𝜌)) can be ignored. Thus, the parameter  

Frame length 25 ms 

Frame period 10 ms 

Pre-emphasis 1 − 0.97𝑧−1 

Feature vectors 12-order MFCC, 

12-order ΔMFCC. 

1-order ΔE 

Acoustic model HMM phonetic tied mixture 

(PTM), 2000 states, GMM 

64 mixtures 

Language model Standard word trigram model 

Training data Adult JNAS database 

𝜌 is optimized by maximizing the likelihood 

of acoustic model, as written by 

𝜌̂ =   arg max
𝜌

𝑃(𝒐(𝜌)|𝑾). 

This optimization problem requires the correct 

transcription 𝑾. However, if it is already known, 

the speech recognizer is not required anymore. 

Therefore, in practice, we apply MOSIE 

estimator postprocessing using a set of 𝜌 

parameters, from which the output with the 

highest acoustic score is chosen. 𝑾 is selected 

from the result of the first iteration. 

4 Experimental Evaluation 

Two experiments have been carried out for 

evaluation purposes. An eight-channel 

microphone array (inter-microphone spacing of 

2.1 cm) was used to record the room impulse 

response with the configuration shown in Fig. 3. 

The estimated 𝑇60  is 500 ms. The observed 

signal was created by convolution of the clean 

speech with the impulse response, and recorded 

real noise was added at SNR of 10 dB. 

Recognition performance was evaluated using 

Julius with the specifications shown in Table 1. 

Since the goal of the proposed method is to 

suppress diffuse background noise and late 

reverberation, we used clean speech convoluted 

with the early impulse response as the baseline. 

The word accuracy measure used in the 

evaluation is calculated as  

WA = 100 ×
𝑁−(𝐼+𝑆+𝐷)

𝑁
, 

where 𝑁, 𝐼, 𝑆, and 𝐷 are the number of words 

in the correct transcription and the number of 

insertions, substitutions, and deletions, 

(17) 

(15) 

(16) 

Figure 3 Room configuration for the experiment. 

Table 1 Speech recognizer specification 

(18) 
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respectively. The frequency domain processing 

was carried out with a 512-point Hamming 

window and 50% overlap of the STFT. FD-BSE 

was performed in 600 iterations with an 

adaptation step of 0.3. The parameter 𝜏𝑑 was set 

to 75 ms, corresponding to the delay that can still 

be handled by the speech recognizer. 

The first experiment was carried out using 

5-male and 5-female utterances from JNAS 

database. We employed several parameter sets, 

e.g., 𝛽 of 0.001 to represent the MOSIE-LSA 

estimator and 1 to represent the MOSIE-STSA 

estimator
[5]

. We manually selected the best result 

among these combinations.  

The results are shown in Table 2. It is shown 

that the multichannel MOSIE estimator improves 

the recognition accuracy compared with FD-BSE. 

On the other hand, the single-channel 

MOSIE-STSA estimator’s performance is inferior. 

This is understandable as single-channel 

processing tends to result in higher speech output 

distortion.  

It can be observed that the MOSIE-STSA 

estimator performs better than the MOSIE-LSA 

estimator for dereverberation. It is also shown 

that the α = 0.96 results in better word accuracy 

than α = 0.98 , which is known to give the 

optimum result for speech enhancement such as 

that for hearing aid system. This may be because 

a high quality output signal waveform is less 

important for speech recognition purposes. 

The optimization scheme was evaluated in the 

second experiment. We used the utterances from 

50-male and 50-female speakers. Parameters α 

and β were set to 0.96 and 1, respectively. The 

results in Table 3 show that the optimized 

methods outperform FD-BSE with an average 

improvement of 12.9%. This implies that 

optimization based on acoustic likelihood is 

effective for our method. 

5 Conclusion 

We combined FD-BSE and MOSIE estimator 

to suppress the diffuse background noise and late 

reverberation for a hands-free ASR system, 

which was optimized based on the acoustic 

likelihood. Experimental results show that the 

proposed method improves the word recognition 

accuracy compared with the FD-BSE method. 

Future work may include the utilization of 

FD-BSE in estimating the speech and late 

reverberation statistical model. 
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