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Abstract—In this paper, we propose an automatic optimization
scheme of FD-BSE-based joint suppression of noise and late
reverberation to improve the speech recognition accuracy for
spoken-dialogue system. First, we optimize the parameter of
conventional FD-BSE-based method using the assessment of
musical noise measured by higher-order statistics and acoustic
model likelihood. Next, to maintain the optimum performance of
the system, we proposed the switching scheme using the distance
information provided by image sensor. The experimental results
show that the proposed approach improves the word recognition
accuracy.

I. INTRODUCTION

Hands-free robot dialogue system captures the user’s ut-
terances at a distance using a microphone array, resulting
in more natural human-machine interaction. In this system,
however, it is difficult to achieve accurate speech recognition
because of the adverse effect from background noise and room
reverberation. While the early reverberation is considered
harmless to speech intelligibility, the late part can deteriorate
the sound quality, depending on the length and strength of this
reverberation [1]. Therefore, a method that can suppress these
interferences is required to improve the recognition accuracy.

Many speech enhancement method have been studied to
solve these problems. In [2], it is shown that frequency-domain
independent component analysis (FD-ICA) [3] performs better
in estimation of diffuse background noise than that of target
speech. Hence, combining FD-ICA as noise estimator and a
nonlinear postprocessing to suppress the estimated noise has
been proved to be effective in improving the target sound
quality. Some of the authors have proposed an improved
diffuse noise estimator, namely, frequency-domain blind sig-
nal extraction (FD-BSE) [4]. Then, by also considering the
effect of room reverberation, they combine the FD-BSE with
two stages of multichannel Wiener filtering (WF) to jointly
suppress diffuse background noise and late reverberation [5]
(hereafter this method is referred to as joint method). To
synthesize the late reverberation component, this method uses
a priori knowledge of the room reverberation time (T60).

Joint method proposed in [5] has been proved to be effective
to improve the recognition accuracy under noisy and reverber-
ant condition. However, some of the parameters still require

manual setting. Therefore, in this paper, first, we address
the optimization problem of FD-BSE-based joint method.
Motivated by previous works of the authors [6], [7], we have
proposed an optimization scheme based on the assessment of
musical noise, which is the artificial distortion generated as
an effect of nonlinear signal processing [8]. In this paper,
we integrate the current optimization scheme with automatic
speech recognizer (ASR) under maximum likelihood criterion
to improve the recognition accuracy performance.

Next, to achieve high recognition accuracy regardless of
the level of interferences, we utilize information on the user
distance. This information is obtained under the assumption
that a robot has it own camera that can immediately detect the
position of the target user. Finally, we confirm the effectiveness
of proposed method through experimental evaluations.

II. RELATED WORK: FD-BSE-BASED JOINT NOISE
SUPPRESSION AND DEREVERBERATION

In this section, we will review the previously proposed
joint method. The architecture of this method is shown in
Fig. 1. Generally, the method can be divided into two stages,
namely, noise suppression stage and dereverberation stage.
Two WFs are utilized separately in each stages, providing
flexibility in adjusting filter strength according to the level
of each interferences. The dynamic characteristic of these
nonlinear filters help to improve the quality of captured speech
in real environment due to nonstationary characteristics of
interferences.

The observed signal x(t) captured at microphone array is
given by

x(t) = (hE(τ) + hL(τ)) ∗ s(t) + n(t), (1)

where s(t) and n(t) are the clean speech source and noise,
respectively, and hE(τ) and hL(τ) indicate the early and late
room impulse response. Most hidden Markov model (HMM)
based speech recognizers are capable to handle the effect of
hE(τ) up to certain time delay τd, for example by applying
cepstral mean normalization.



Fig. 1. Block diagram of joint blind noise suppression and dereverberation
method.

Fig. 2. Room configuration for the experiment.

A. Noise Suppression Stage

Conventional joint method uses FD-BSE algorithm to esti-
mate both direction of arrival (DOA) θ̂ and the background
noise component. Unlike conventional FD-ICA, FD-BSE ex-
ploits the sparseness of the modulus of the target speech
signal [4]. In frequency domain, the extracted output Y (f, t) is
obtained by applying extracting vector to the observed signal,
as given by

Y (f, t) = A(f)X(f, t). (2)

The vector A(f) is updated using a gradient descent method
to minimize the cost function J(A(f)) given by,

J(A(f)) =
1

2
E{|Y (f, t)|}2, (3)

E{|Y (f, t)|2} = 1. (4)

In the case of a target speech within background noise, the
speech modulus may be considered sparser than that of the
diffuse background noise components in the sense that most
of its values are close to zero and only a few are significantly
large. Thus the cost function is minimum when the target
speech component is extracted. In this way, it is not required
to confirm the selection of noise components, which means
the permutation problem as in frequency-domain blind signal
separation (FD-BSS) can be avoided.

The estimated noise N̂(f, t) is obtained by applying pro-
jection back to the residual output Y (noise)(f, t) which only
contains noise component, given by

N̂(f, t) = A−1(f)Y (noise)(f, t). (5)

This noise estimate is then suppressed using a set of multi-
channel WF as given by

X̂S(f, t) = G|X(f, t)|ejarg(X(f,t)), (6)

G =
|X(f, t)|2

|X(f, t)|2 + βN |N̂(f, t)|2
, (7)

Fig. 3. Performance comparison of FD-BSE and FD-BSS.

TABLE I
SYSTEM SPECIFICATION OF ASR

Frame length 25 ms
Frame period 10 ms
Pre-emphasis 1− 0.97z−1

Feature vectors 12-order MFCC,
12-order ∆MFCC,
1-order ∆E

Acoustic model HMM phonetic tied mixture (PTM),
2000 states, GMM 64 mixtures

Language model standard word trigram model
Training data Adult JNAS database

where βN is a parameter for controlling the strength of noise
suppression.

B. Dereverberation Stage
Assuming that the noise suppression stage is effective, the

estimated X̂S(f, t) contains only early reverberant speech
XE(f, t) and late reverberant speech XL(f, t). In this stage,
first the late reverberation component is synthesized according
to equation (1), given by

x̂L(t) = hL(τ) ∗ ŝ(t), (8)

where hL(τ) is approximated by generating channel-wise
synthetic tail from decayed Gaussian random variable. The
direct speech s(t) estimation requires more strategy as there
is no clean speech can be used as reference. In this method,
s(t) is estimated using by projecting back the ouput of noise
suppression stage X̂s(f, t) to the truncated FD-BSE filter.
After that, dereverberation process is done in the same manner
as noise suppression stage, using multichannel WF given by,

X̂E(f, t) = G|X̂S(f, t)|ejarg(X̂S(f,t)), (9)

G =
|X̂S(f, t)|2

|X̂S(f, t)|2 + βR|X̂L(f, t)|2
, (10)

where βR is a parameter for controlling the strength of
dereverberation. Consequently, this stage requires a priori
information of T60.

III. AUTOMATIC OPTIMIZATION SCHEME OF JOINT
METHOD

A. Motivation and Strategy
In order to confirm the effectiveness of FD-BSE to cope

with diffuse background noise and reverberation, we conduct



Fig. 4. Effect of parameter settings in joint method to recognition accuracy
result for input signal at 5m distance and SNR of 10 dB.

preliminary experiment to compare the output from FD-BSE
and FD-BSS method. Here we use ICA algorithm in [9] for
FD-BSS. In addition, the modulus-sparseness-based permu-
tation solver is also applied to the FD-BSS method, so the
performance of main algorithm in both FD-BSE and FD-BSS
can be compared.

An 8-channel microphone array was use to record the room
impulse response with the configuration as shown in Fig.
2. The estimated T60 is 500 ms. For the input signals, 10
utterances (average length ≈ 5 s) were convoluted with real
recorded impulse response at various distance between speaker
and microphone array, and then were mixed with 10 dB SNR
noise.

The performance of each methods is evaluated using noise
reduction rate (NRR), which is defined as the difference of
signal-to-noise ratio (SNR) of signal before and after process-
ing. The SNR of a signal is represented by

SNR = 10 log10
E[s(t)]2

E[n(t)]2
, (11)

where s(t) and n(t) are the speech and noise component of
signals, respectively. Since high SNR indicates good signal
quality, high NRR result is preferable.

Figure 3 shows the NRR result of estimated output speech
from each methods. It is clearly shown that the conventional
FD-BSS cannot perform well in the presence of diffuse
background noise and reverberation. The performance is sig-
nificantly improved in modified FD-BSS due to the use of
modulus-sparseness-based permutation solver. However, we
can see that the FD-BSE still outperforms in every condition.
Moreover, the computation time of FD-BSE is greatly reduced
in comparison to that of FD-BSS, with the ratio of 0.37 in
average. It is possible due to the fact that the update rule
in FD-BSE only involves n × 1 vector, while it is computed
for n × n matrix for FD-BSS. Thus, the use of FD-BSE is
preferable.

By combining FD-BSE and WF filters in joint method as
described in Sect. II, we gain more flexibility in suppressing
the interferences, thus making the method more robust to
various acoustical condition. However, one expected problem
to arise is the complex parameter optimization and prediction

of the best parameters, namely, βN and βR, for speech
recognition performance. The common way to evaluate this
performance by using word accuracy, described as

WA = 100× N − (I + S +D)

N
, (12)

where N is the number of words in the reference, I is the
number of insertions, S is the number of substitutions, and D
is the number of deletions.

Another preliminary experiment has been done to analyze
the effect of parameter settings in joint method to recognition
accuracy. For the recognition task, we use similar condition as
the previous experiment, and a 20K-word Japanese dictation
task from the JNAS database [10] is used as performance
measure. Here, the reference signal is clean speech convoluted
with early impulse response. We use JULIUS [11] as speech
recognizer. The specification for speech recognition perfor-
mance evaluation is shown in Table I. As depicted in Fig. 4, the
correct setting of both parameters of joint method will result in
better word accuracy compared to speech estimation from FD-
BSE alone. On the other hand, bad setting of the parameters
will result in worse performance. In the conventional joint
method, the optimization is still done manually, which makes it
impossible to be implemented in real environment. Therefore,
it is our concern to build an efficient method to control these
parameters automatically.

The previous optimization scheme is based on higher-order
statistics which corresponds to the assessment of generated
musical noise [8]. In this paper, we propose an optimization
scheme that utilizes two control parameters, namely, higher-
order statistics and acoustic model likelihood. The proposed
optimization scheme is focused on setting of parameters of
WFs, under the assumption that T60 is known.

B. Parameter Optimization Based on Higher-Order Statistics

The amount of musical noise is highly correlated to the
number of isolated power spectral components and their
level of isolation. These isolated components are called tonal
components. Since such tonal components have relatively high
power, they are strongly related to the weight of the tail of their
probability density function (pdf). Therefore, it is possible to
assess the amount of musical noise using statistics measures
of their pdf. Kurtosis has been introduced in our studies to
evaluate the tail of the pdf [12], successfully showing the
effectiveness of using the higher-order statistics.

In this paper, first, we calculate the frequency subband-wise
kurtosis [7] as given by

kurt(i) =
(1/M)

∑
f∈Fi

∑
t∈T (|X(f, t)|2)4

{(1/M)
∑
f∈Fi

∑
t∈T (|X(f, t)|2)2}2

, (13)

where kurt(i) is the i-th subband kurtosis of a signal x. Fi
and T represent the evaluated subband time-frequency grid
indexes, while M indicates the total number of grids in each
subband. Here 250-Hz-width Fi and T of 5 s are used, which
are taken from noise-only time-frequency region preceding a



Fig. 5. Optimization scheme of joint method via higher-order statistics and acoustic model likelihood.

Fig. 6. Experimental evaluation of optimization scheme; (a) NRR, and (b)
Word accuracy.

speech utterance. Then, the assessment of generated musical
noise is done by applying the kurtosis ratio, given by

kurtosis ratio = kurtproc/kurtorg, (14)

where kurtproc is the kurtosis of the processed signal and
kurtorg is the kurtosis of the observed signal.

C. Parameter Optimization Based on Acoustic Model Likeli-
hood

In spoken-dialogue system, the speech enhancement method
can only be expected to improve recognition performance if
it generates results that improve the likelihood of the correct
transcriptions. Therefore, we also optimize the parameter to
maximize the likelihood of acoustic model of speech recog-
nizer. Previous researches have confirmed the effectiveness

of this solution in optimizing several speech enhancement
methods, for example on beamforming method [13].

In speech recognizer, a series of fixed size acoustic vectors
o(β) = [o1, ..., oT ] is extracted from the output of speech en-
hancement with parameter β through some feature extraction
process. During decoding, it attempts to hypothesize the word
sequence W = [w1, ..., wK ] which is the most probable to
generate the sequence o(β), as stated by

Ŵ = arg max
W

P (W |o(β)). (15)

However, the recognition system cannot compute the pos-
terior probability P (W |o(β)) directly. Instead, the above
expression is transformed into the following form based on
Bayes’ theorem:

Ŵ = arg max
W

P (o(β)|W )P (W )

P (o(β))
, (16)

where P (o(β)|W ) is the acoustic likelihood or acoustic
score, representing the probability that feature sequence o
is observed given that word sequence W was spoken, and
P (W ) is the language score, i.e., the a priori probability of
a particular word sequence W . The former term is calculated
from acoustic model, while latter term is computed using a
language model.

Since Eq. (16) is maximized with respect to the word
sequence W for a given observed sequence o that is fixed,
the denominator term P (o(β)) can be ignored. Thus, the
parameter β can be optimized by maximizing the likelihood
of acoustic model of speech recognizer, as written by

β̂ = arg max
β

P (o(β)|W ). (17)

D. Algorithm and Experimental Evaluation

The block diagram of the proposed optimization scheme
is shown in Fig. 5. Provided the a priori knowledge of
T60, the WF parameters are updated consecutively. First, the
residual noise quality is assessed from silence part of signals
preceeding the utterances, using voice activity detection based
on noise estimation from FD-BSE. Using this assessment, βN



Fig. 7. Block diagram of semi-blind optimized joint method.

is updated to achieve optimum NRR under a kurtosis ratio
constraint, as given by

β̂N = arg max
βN

NRR(βN),
kurtproc(βN)

kurtorg
≤ KRlim, (18)

where KRlim is a constraint value of KR. Next, βR is updated
according to acoustic model likelihood according to Eq. (17),
to optimize

β̂R = arg max
βR

P (o(βR)|W ). (19)

This two-step scheme has a great advantage that the com-
plex optimization of two parameters βN and βR can be
reasonably decomposed into two simple optimization for each
parameters. By using noise kurtosis ratio constraint in noise
suppression stage, the unwanted background noise can be
suppressed effectively, thus the late reverberation synthesis be-
comes more accurate. Moreover, the acoustic model likelihood
criterion for optimization in dereverberation stage will ensure
optimum recognition accuracy of the output speech.

We conduct experiments to evaluate the performance of the
proposed optimization scheme. For this experiment, we use
200 utterances from JNAS database as input signals, while
other settings are set similar to preliminary experiment. The
performance of the optimized joint method (opt) is compared
with the estimated speech from FD-BSE (bse). The experiment
is also conducted on underestimated T60 of 300 ms, to analyze
the effect of mismatched value to the performance of the
proposed scheme. The experimental results are shown in Fig.
6. For the recognition performance, the reference is indicated
by (ref) and the unprocessed observed signal is indicated by
(obs).

From the figure, it is shown that the proposed scheme is
superior to FD-BSE in terms of noise reduction performance.
However, the word recognition accuracy result shows that
the speech estimate from FD-BSE gives best accuracy at
close distance compare to the proposed method. The effect of
mismatched T60, as one can expect, is not very clear in case of
NRR, but it is significant at recognition accuracy, particularly
under heavily reverberant condition indicated by far speaker
to microphone distance.

Fig. 8. Word recognition accuracy result of proposed scheme.

IV. SEMI-BLIND JOINT NOISE SUPPRESSION AND
DEREVERBERATION USING IMAGE INFORMATION

A. Motivation and Strategy

The experimental result shows that the proposed optimiza-
tion scheme fails to achieve optimum speech recognition
accuracy at close user distance. This may be happened because
of the following reasons:
• FD-BSE as linear filter results in output signal with less

distortion when the interferences effect is not so severe,
compare to the proposed scheme that includes nonlinear
processing.

• At closer user distance, the effect of room reverberation
is light to moderate. The late reverberation becomes
overestimated in the proposed scheme.

• Some part of late reverberation may have been treated as
background noise due to similar characteristics.

In order to achieve the optimum performance, we need a
system that can select the signal processing method to be
applied according to the condition of environments. In this
paper, we utilize the user position information, provided by
robot’s camera, and develop a multimodal switching scheme
according to the distance information, under assumption that
the user distance corresponds to the effect of interferences.

B. Algorithm and Experimental Evaluation

The block diagram of the proposed multimodal scheme is
shown in Fig. 7. First, the system is trained to estimate the
distance limit to switch method. Both FD-BSE and optimized
joint method are applied to the signals at various speaker
to microphone distance, and the results are compared. Next,
after the switching point is decided, the system will apply two
different schemes according to the user position:
• For close user distance, only FD-BSE estimation is ap-

plied to the input signal. The extracted speech from FD-
BSE becomes the output signal.

• For far user distance, the optimized joint method is
applied in addition to the FD-BSE.

The average result of recognition performance is depicted
in Fig. 8. We compare the performance of semi-blind joint
method with estimated speech from FD-BSE (bse) and the
optimized joint method (opt). In average, semi-blind method
achieves better word recognition accuracy compare to the
conventional method. This shows that the semi-blind joint



approach can maintain optimum performance regardless the
interference condition, in contrast with the other two methods.

V. CONCLUSIONS

In this paper, first, we have proposed an optimization
scheme of FD-BSE based joint noise suppression and derever-
beration via higher-order statistics and acoustic model likeli-
hood. Next, to maintain optimum word recognition accuracy
performance, we developed a semi-blind method selection
scheme using image information of user position. The ex-
perimental result confirms the effectiveness of our proposed
method.
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