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Abstract
In this study, we perform a theoretical analysis of the amount
of musical noise generated in Bayesian minimum mean-square
error speech amplitude estimators. In our previous study, a
musical noise assessment based on kurtosis has been success-
fully applied to spectral subtraction. However, it is difficult to
apply this approach to the methods with a decision-directed a
priori SNR estimator because it corresponds to a nonlinear re-
cursive process for noise power spectral sequences. Therefore,
in this paper, we analyze musical noise generation by combin-
ing Breithaupt-Martin’s approximation and our higher-order-
statistics analysis. We also compare the result of theoretical
analysis and that of objective experimental evaluation to indi-
cate the validity of the proposed closed-form analysis.
Index Terms: noise reduction, musical noise, higher-order
statistics, kurtosis, decision-directed a priori SNR estimator

1. Introduction
Over the past decade, the number of applications of speech
communication systems, such as TV conference systems and
mobile phones, has increased. These systems, however, al-
ways suffer from a problem of deterioration of speech quality
under adverse noise conditions. Therefore, in speech signal
processing, noise reduction is a problem requiring urgent at-
tention. Spectral subtraction (SS) [1], Wiener filter (WF) [2],
and the minimum mean-square error short-time spectral ampli-
tude (MMSE STSA) estimator [3] are the commonly used noise
reduction methods that have high noise reduction performance.
However, in these methods, artificial distortion, so-called musi-
cal noise, arises owing to nonlinear signal processing, leading
to a serious deterioration of sound quality [4].

Recently, an objective metric to measure how much musical
noise is generated through nonlinear signal processing based on
higher-order statistics has been developed by some of the au-
thors [5, 6, 7] and others [8, 9]. Using this metric, we have
successfully analyzed the amount of musical noise generated
via various types of SS-based methods [10, 11, 12, 13, 14, 15].
However, it is still difficult to theoretically analyze the noise re-
duction methods with a decision-directed a priori SNR estima-
tor (hereafter, this is referred to as the DD approach), e.g., the
MMSE STSA estimator, because it corresponds to a nonlinear
recursive (infinite) process for noise power spectral sequences.
Several studies on the systematic analysis of the DD approach
have been provided [4, 16], but they did not use the explisit met-
ric of musical noise generation like higher-order statistics so far.

In this paper, we focus on an approximated model [16] pro-
posed by Breithaupt et al. We propose to analyze musical noise
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generation in DD-approach-based WF, the MMSE STSA esti-
mator and the minimum mean-square error log-spectral ampli-
tude (MMSE LSA) estimator [17] by combining Breithaupt’s
approximation and our higher-order-statistics analysis. We also
compare the result of theoretical analysis and that of objective
experimental evaluation to indicate the validity of the proposed
closed-form analysis.

2. Related works
2.1. Mathematical metric of musical noise generation via
higher-order statistics [5, 6]

We speculate that the amount of musical noise is highly corre-
lated with the number of isolated power spectral components
and their level of isolation. In this paper, we call these iso-
lated components tonal components. Since such tonal compo-
nents have relatively high power, they are strongly related to the
weight of the tail of their probability density function (p.d.f.).
Therefore, quantifying the tail of the p.d.f. makes it possible to
measure the number of tonal components. Thus, we adopt kur-
tosis, one of the most commonly used higher-order statistics,
to evaluate the percentage of tonal components among the to-
tal components. A large kurtosis value indicates a signal with a
heavy tail, meaning that the signal has many tonal components.
Kurtosis is defined as

kurt = µ4/µ
2
2, (1)

where kurt is the kurtosis and µm is the mth-order moment as

µm =

∫ ∞

0

zmp(z)dz, (2)

where p(z) is the p.d.f. of a signal z in the power spectral do-
main.

In this study, we apply such a kurtosis-based analysis to a
noise-only time-frequency period of subject signals for the as-
sessment of musical noise. Thus, this analysis should be con-
ducted during, e.g., periods of silence during speech. This is
because we aim to quantify the tonal components arising in the
noise-only part, which is the main cause of musical noise per-
ception, and not in the target-speech-dominant part.

Although kurtosis can be used to measure the number of
tonal components, note that the kurtosis itself is not sufficient
to measure the amount of musical noise. This is obvious since
the kurtosis of some unprocessed noise signals, such as an in-
terfering speech signal, is also high, but we do not recognize
speech as musical noise. Hence, we turn our attention to the
change in kurtosis between before and after signal processing
to identify only the musical-noise components. Thus, we adopt
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the kurtosis ratio as a measure to assess musical noise [5]. This
measure is defined as

kurtosis ratio = kurtproc/kurtorg, (3)

where kurtproc is the kurtosis of the processed signal and kurtorg

is the kurtosis of the observed signal. This measure increases as
the amount of generated musical noise increases. In Ref. [5], it
was reported that the kurtosis ratio is strongly correlated with
the human perception of musical noise.

2.2. Analysis of amount of noise reduction [12]

We analyze the amount of noise reduction via processing. Here-
after, we define the noise reduction rate (NRR) [18, 19] as a
measure of the noise reduction performance, which is defined
as the output SNR in dB minus the input SNR in dB. The NRR
is

NRR = 10log10(E[s
2
out]/E[n

2
out])/(E[s

2
in]/E[n

2
in]), (4)

where sin and sout are the input and output speech signals,
and nin and nout are the input and output noise signals, re-
spectively. If we assume that the amount of noise reduction
is much larger than that of speech distortion in processing, i.e.,
E[s2out] ' E[s2in], then

NRR ' 10log10E[n
2
in]/E[n

2
out] = 10log10µ1/µ

′
1, (5)

where µ1 is the 1st-order moment of observed signal power
spectra, and µ′

1 is the 1st-order moment of processed signal
power spectra.

2.3. DD-approach-based WF [2]

We apply short-time Fourier analysis to the observed signal,
which is a mixture of target speech and noise, to obtain the time-
frequency signal X(f, τ) = S(f, τ)+N(f, τ), where X(f, τ)
is the observed signal, f denotes the frequency subband, and τ
is the frame index. S(f, τ) and N(f, τ) denote the input speech
and noise signals. The signal processing procedures of WF are
formulated as

Y (f, τ) = ξ(f, τ)/(ξ(f, τ) + 1) ·X(f, τ), (6)

where Y (f, τ) is the enhanced target speech signal. Also,
ξ(f, τ) and γ(f, τ) are a priori and a posteriori SNRs, which
are defined as

ξ(f, τ) = E[|S(f, τ)|2]/E[|N(f, τ)|2], (7)

γ(f, τ) = |X(f, τ)|2/E[|N(f, τ)|2]. (8)

In (7) and (8), we can commonly estimate E[|N(f, τ)|2]
by averaging the noise power spectra in the speech absent time
period, or by using other estimation methods [3, 16]. How-
ever, since we cannot estimate E[|S(f, τ)|2] in advance, a priori
SNR ξ(f, τ) is approximately calculated by the following DD
approach;

ξ̂(f, τ)=αγ(f, τ−1)G2(f, τ−1)+(1−α)F [γ(f, τ)−1],
(9)

where α is a forgetting factor and F [·] is a flooring function.

2.4. MOSIE estimator [16]

In this paper, we introduce the MOSIE estimator proposed by
Breithaupt et al., which generalizes the MMSE STSA estimator
and MMSE LSA estimator [16]. The processed signal Y (f, τ)
via the MOSIE estimator is written as

Y (f, τ) =
√

ξ(f, τ)/(ρ+ ξ(f, τ))
√

PN̂ (f)[
Γ(ρ+ β

2
)

Γ(ρ)

Φ(1− ρ− β
2
, 1;−ν(f, τ))

Φ(1− ρ, 1;−ν(f, τ))

]1/β

ejarg(X(f,τ)),

(10)

where ν(f, τ) = ξ(f, τ)γ(f, τ)(ρ + ξ(f, τ))−1, PN̂ (f) is a
power spectral density estimated from the speech absence pe-
riod of the observed signal, Φ(a, b; k) = 1F1(a, b; k) is the
confluent hypergeometric function, and Γ(·) is the gamma func-
tion. Also, β is an amplitude compression parameter with the
error function e(S(f, τ), Y (f, τ)) = Sβ(f, τ)−Y β(f, τ), and
ρ is a shape parameter of a chi-distribution that is used for mod-
eling the p.d.f. of the speech amplitude. Equation (10) corre-
sponds to the MMSE STSA estimator with ρ = 1, β = 1, and
to the MMSE LSA estimator with ρ = 1, β → 0.

3. Theoretical analysis of higher-order
statistics in WF and MOSIE estimator

3.1. Motivation and strategy

In our previous report [20, 21], we tried to calculate the kur-
tosis ratio in the MMSE STSA estimator based on the multi-
dimensional numerical integration. It required, however, too
huge computation like Tera–Giga order multiply-accumulation,
resulting in several-week or -day calculations for each pa-
rameter setting. Therefore, in this paper we propose a new
computational-cost-efficient closed-form analysis.

First, we model the noise signal power spectra x using the
following gamma distribution as

p(x) = xη−1exp(−x/θ)(θηΓ(η))−1, (11)

where η is the shape parameter corresponding to the type of
noise, and θ is the scale parameter of the gamma distribution. If
the input signal is Gaussian noise, the p.d.f. of its power spectra
obeys the chi-square distribution with two degrees of freedom,
which corresponds to the gamma distribution with η = 1. Also,
if the input signal is super-Gaussian noise, the p.d.f. of its power
spectra obeys the gamma distribution with η < 1. Hereafter,
to analyze the NRR and kurtosis ratio in WF and the MOSIE
estimator with the DD approach, we formulate the mth-order
moment using several useful approximations.

3.2. Theoretical analysis of DD-approach-based WF

WF without the DD approach has been analized using higher-
order statistics in our previous study [12], but no analysis for
DD-approach-based WF has been provided so far; therefore we
give it in this section. Since the DD approach (9) requires an
infinite number of samples from the past, we cannot estimate
how the p.d.f. of noise will change via WF. In this paper, we
introduce an approximation defined below as the estimation of
a priori SNR [16]

ξ̂(f, τ) ≈ (1− α)ξml(f, τ), (12)

ξml(f, τ) = max{0, γ(f, τ)− 1}, (13)
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where ξml(f, τ) corresponds to a maximum-likelihood estimate
of the a priori SNR. The estimation of the processed signal via
WF is rewritten as follows, where we use (12) instead of (9);

Y (f, τ) ≈ (1− α)ξml(f, τ)

(1− α)ξml(f, τ) + 1
X(f, τ). (14)

The p.d.f. of the observed signal, p(x), is transformed into
p(y) by signal processing. We can calculate p(y) by consider-
ing a change of variables of the p.d.f. Suppose that a change of
variables, y = g(x), is applied to convert an integral in terms
of the variable x to an integral in terms of the variable y. The
converted p.d.f. p(y) can be written as p(y) = p(g−1(y))|J |,
where |J | = |dg−1/dy| is the Jacobian of the transformation.
We apply this to (11) to obtain the p.d.f. after processing, p(y).
Since x is the power spectral domain signal and its mean value
E[|N(f, τ)|2] is given by ηθ in the gamma distribution, the
variable y used for processing is expressed as

y =


(1−α)( x2

ηθ
−x)

(1−α)( x
ηθ

−1)+1
, if x ≥ ηθ

0, if x < ηθ.
(15)

Since x > 0 and y > 0, the Jacobian is dx/dy = h′(y) = |J |,
where h(·) is the inverse function of g(·). Consequently,

p(y)=h(y)η−1exp(−h(y)/θ)(Γ(η)θη)−1h′(y). (16)

The mth-order moment of p(y) is given by

µm=

∫ ∞

θη

ym h(y)η−1exp(−h(y)
θ

)

Γ(η)θη
h′(y)dy. (17)

Let t = h(y)/θ, then dy = θ/h′(y)dt and the range of the
integral does not change. Furthermore, h(y) is expressed as

h(y) = tθ = x. (18)

We apply (18) to (15), then ym is expressed as

ym =

(
(1− α)( θ

2t2

θη
− θt)

(1− α)( tθ−1
θη

) + 1

)m

. (19)

Then, we apply (18) and (19) to (17) to obtain

µm =
(1− α)mθm

Γ(η)

∫ ∞

θη

( t2

η
− t

(1− α) t
η
+ α

)m

tη−1exp(−t)dt.

(20)

Here, the integration term in (20) can be easily calculated using
a simple one-dimensional numerical integration method.

3.3. Theoretical analysis of MOSIE estimator

Hereafter, we assume ρ = 1. First, in order to simplify the
expression (10), we use the first and second terms of the Taylor
series expansion ξ(f, τ)/(1 + ξ(f, τ)) ≈ ξ(f, τ) − ξ2(f, τ),
which is valid for low SNR conditions with ξ(f, τ) � 1. In
addition, we introduce some approximations [16], then (10) can
be rewritten as

|Y (f, τ)| ≈
√

ξ(f, τ)− ξ2(f, τ)
√

PN̂ (f)
√

R(β), (21)

where

R(β)=

{
Γ(1+β/2)2/β , if β 6=0

exp(−c), if β=0
(22)

and c = 0.5772... is Euler’s constant.
Next, we introduce an approximation defined below as an

estimate of a priori SNR [16] such as the case of WF,

ξ̂(f, τ) ≈ hξ(f, τ) ∗ ξml(f, τ), (23)

where ∗ is an operator of convolution, and the variables in (23)
are defined as

hξ(f, τ) =(1− α)exp(−λξτ), (24)

λξ =ln

(
1

αR(β)

)
. (25)

Equation (21) can be rewritten as follows by using (23) instead
of (9),

|Y (f, τ)|2 ≈(hξ(f, τ) ∗ ξml(f, τ))R(β)PN̂ (f)

− (hξ(f, τ) ∗ ξml(f, τ))2R(β)PN̂ (f). (26)

Since the convolution calculation exists in (26), it is diffi-
cult to directly calculate the mth-order moment of the processed
signal via the MOSIE estimator. To solve this problem, first,
we calculate the cumulant of the processed signal, and then we
calculate the moment of the processed signal using the transfor-
mation formula of cumulants and moments. From (26), we can
obtain the mth-order cumulant of the processed signal as

Km(|Y (f, τ)|2) =

((1− α)R(β)ηθ)mKm(ξml(f, τ))
∞∑

τ=1

exp(−mλξτ)

− ((1− α)2R(β)ηθ)mKm((ξml(f, τ))2)
∞∑

τ1=1

∞∑
τ2=1

exp(−mλξτ1)exp(−mλξτ2), (27)

where Km(·) is the mth-order cumulant of ·. Using the sum of
a geometric series, we can rewrite (27) as

Km(|Y (f, τ)|2) =
2∑

i=1

(−1)i−1(1−α)im(R(β)ηθ)mZi(m)Km((ξml(f, τ))i),

(28)

where Zi(m) = exp(−imλξ)/(1 − exp(−mλξ))
i. Here,

we introduce an analogy that the sequence ξml(f, τ) =
max{0, γ(f, τ) − 1} is generated from the process of normal-
ized SS with the oversubtraction parameter of 1 and the flooring
parameter of 0. Thanks to this analogy, we can obtain the mth-
order moment of ξml(f, τ) in a closed form [12] as

µm[SS] =

m∑
l=0

(−η)l
Γ(m+ 1)Γ(η +m− l, η)

Γ(η)Γ(l + 1)Γ(m− l + 1)
. (29)

Using the transformation formula from moments to cumulants,
Km((ξml(f, τ))i) on the right-hand side of (28) can be ex-
pressed as

K1((ξ
ml(f, τ))i)= µi[SS]

K2((ξ
ml(f, τ))i)= µ2i[SS]−µ2

i[SS]

K3((ξ
ml(f, τ))i)= µ3i[SS]−3µ2i[SS]µi[SS]+2µ3

i[SS]

K4((ξ
ml(f, τ))i)= µ4i[SS]−4µ3i[SS]µi[SS]−3µ2

2i[SS]

+12µ2i[SS]µ
2
i[SS]−6µ4

i[SS]

,

(30)
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Figure 1: Theoretical behavior and experimental results for WF:
(a) noise reduction rate, and (b) log kurtosis ratio.

resulting in the closed-form calculation of Km(|Y (f, τ)|2) in
(28). Using the transformation formula from cumulants to mo-
ments, we transform the cumulant (28) into the corresponding
moment. Finally, each order moment of the processed signal is
given by

µ1= K1(|Y (f, τ)|2)
µ2= K2(|Y (f, τ)|2)+K2

1 (|Y (f, τ)|2)
µ4= K4(|Y (f, τ)|2)+4K3(|Y (f, τ)|2)K1(|Y (f, τ)|2)

+3K2
2 (|Y (f, τ)|2)+6K2(|Y (f, τ)|2)K2

1 (|Y (f, τ)|2)
+K4

1 (|Y (f, τ)|2)

.

(31)

4. Experiment
4.1. Experimental conditions

We calculated the NRR and the kurtosis ratio using (20) and
(31), respectively. The shape parameter η of the noise p.d.f.
is set to 1.0, and the forgetting factor α is varied from 0.8 to
0.99. Since the kurtosis of the processed signal changes expo-
nentially, we depict the logarithm of the kurtosis ratio, which is
referred to as the log kurtosis ratio. If the log kurtosis ratio is
large, it denotes that much musical noise generated. If the log
kurtosis ratio equals zero, it means that there is no musical noise
generated.

In addition, we conducted a real noise reduction experiment
in order to confirm the validity of our proposed theoretical anal-
ysis. The NRR and the log kurtosis ratio are calculated from
actual noise reduction results obtained from the observed sig-
nals and processed signals. In the evaluation experiment, the
noisy observed signals were generated by adding noise signals
to target speech signals with an SNR of 0 dB. The target speech
signals were the utterances of four speakers (four sentences).
The length of each signal was 15 s, and each signal was sam-
pled at 16 kHz. The FFT size is 1024, and the frame shift length
is 256. In these experiments, we calculated the noise prototype,
i.e., the average of |N̂(f, τ)|2, in the first 10 s frames, where
the speech signal is absent.

Figure 2: Theoretical behavior and experimental results for
MMSE STSA estimator and MMSE LSA estimator: (a) noise
reduction rate, and (b) log kurtosis ratio.

4.2. Results

Figures 1 and 2 show the theoretical behaviors calculated us-
ing (20) and (31), and the objective evaluations for each of the
noise reduction methods. Regarding the detailed behavior of
the NRR, all the estimators show the same tendency in that the
NRR becomes higher as the larger forgetting factor α is used
(see Figs. 1(a) and 2(a)).

Regarding the log kurtosis ratio, WF shows a monotonic
increase of the kurtosis ratio as α increases (see Fig. 1(b)), indi-
cating that the NRR and musical noise generation share a trade-
off relationship. Consequently, there is no justification of using
large α in WF. In contrast, we can see that the log kurtosis ratio
drops when large α is used in the MMSE STSA estimator and
MMSE LSA estimator (see Fig. 2(b)), whereas WF does not
show such a kurtosis-ratio drop. From the results, we can spec-
ulate that the kurtosis-ratio drop is the key factor of less musical
noise property in the MOSIE estimator when we set a large α in
the DD approach, unlike WF. In addition, our approximated the-
oretical analysis can successfully explain the tendency in good
agreement with the experimantal results.

5. Conclusion
In this study, we performed a theoretical analysis of the amount
of musical noise generated via WF and the MOISE estimator
with the DD approach on the basis of higher-order statistics. In
particular, we derived higher-order statistics in the closed form
using the approximated model proposed by Breithaupt et al.
From this result, we can well explain the tendency of the be-
haviors in the NRR and kurtosis ratio for each method. Also,
we can speculate that the kurtosis-ratio drop is the key factor
of less musical noise property in the MOISE estimator when
we set a large forgetting factor in the DD approach, unlike WF
(even when WF is based on the DD approach).
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