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Abstract

The current state-of-the-art approach in grapheme-to-phoneme
(g2p) conversion is structured learning based on the Margin In-
fused Relaxed Algorithm (MIRA), which is an online discrim-
inative training method for multiclass classification. However,
it is known that the aggressive weight update method of MIRA
is prone to overfitting, even if the current example is an outlier
or noisy. Adaptive Regularization of Weight Vectors (AROW)
has been proposed to resolve this problem for binary classifi-
cation. In addition, AROW’s update rule is simpler and more
efficient than that of MIRA, allowing for more efficient train-
ing. Although AROW has these advantages, it has not been ap-
plied to g2p conversion yet. In this paper, we first apply AROW
to g2p conversion which is structured learning problem. In an
evaluation that employed a dataset including noisy data our pro-
posed approach achieves a 5.3% error reduction rate compared
to MIRA implemented in DirecTL+ in terms of phoneme error
rate while requiring only 78% the training time.

Index Terms:g2p conversion, out-of-vocabulary word, online
discriminative training, structured learning, AROW

1. Introduction

Grapheme-to-phoneme (g2p) conversion is used to estimate the
pronunciations of out-of-vocabulary (OOV) words, and is an
essential part of large-vocabulary open-domain speech recogni-
tion systems [1] and text-to-speech systems [2]. Rule-based ap-
proaches [3] and statistical approaches based on methods such
as neural networks [4], decision trees [5], and maximum en-
tropy [6] have been proposed for the task. Recently, there are
two major statistical approaches in g2p conversion: the joint
sequence model [7, 8] and structured learning based on the
Margin Infused Relaxed Algorithm (MIRA) [9]. The joint se-
quence model is a generative model employing joint n-grams
for graphemes and phonemes. MIRA is an online discrimi-
native training method for discriminative models of multiclass
classification that learns parameters that correctly classify the
current instance with a sufficient margin. MIRA has also been
expanded to structured learning problems for which there are
an extremely large number of candidate answers, such as g2p
[10, 11]. Previous reports on MIRA-based g2p note that it out-
performs the joint sequence model in terms of word error rate
on g2p tasks. However, MIRA is also prone to overfitting, as
it updates parameters to correctly classify the current example,
even if the current example is an outlier or noisy.

Recently, employing pronunciaions from the World Wide
Web as training data for g2p model without a cross-check of
language experts has been proposed [12]. In this case, the train-
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ing data is expected to include a lot of noisy data, and actually,
in [12], degrades the performance of the speech recognition sys-
tem in exchange for improvements of cost and time for dictio-
nary construction. When this sort of noisy data is used to train
a g2p system, it is extremely important to have an approach that
is highly accurate and robust to overfitting.

Adaptive Regularization of Weight Vectors (AROW) [13] is
another online discriminative training method for binary classi-
fication that has been proposed as an approach to resolve over-
fitting. This is achieved by gradually learning parameters to cor-
rectly classify the training data, without guaranteeing that the
current example is correctly classified. In addition, AROW’s
update rule is simpler than that of MIRA, allowing for more ef-
ficient training. In multiple binary classification tasks, AROW
has been shown to outperform the Passive-Aggressive (PA) al-
gorithm [14] which can be regarded as the binary classification
equivalent of MIRA. In this paper, we first apply AROW to g2p
conversion, which is a structured learning problem. We eval-
uate the proposed approach on a g2p task, comparing with the
joint sequence model and structured learning based on MIRA.

The rest of this paper is organized as follows. In Section 2,
we describe g2p conversion based on linear classifiers, which
are employed in the existing method based on MIRA and our
proposed approach based on AROW. The existing structured
learning approach based on MIRA is described in Section 3
and our proposed approach is described in Section 4. In Sec-
tion 5, we report on a evaluation experiment for our proposed
approach on a g2p task which employs a dictionary written in
English. Finally, Section 6 states our conclusion.

2. G2p conversion based on linear
classifiers

We define g2p conversion as a process to convert a grapheme
sequence x into a phoneme sequence y. To obtain a correct
phoneme sequence y from a grapheme sequence &, we employ
a linear classifier defined as

g = arg maxw - ®(x, y)
Kl

M

where w indicates the classifier’s weight vector and ®(x, y) in-
dicates a feature vector which consists of arbitrary frequencies
such as frequencies of joint n-gram features [11] on  and y. In
Eq.(1), g can be efficiently obtained using dynamic program-
ing. Structured learning can be employed to obtain a w that
allows for accurate prediction of the correct phoneme sequence
in this framework. In the following sections, we describe two
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Algorithm 1 Online structured learning based on MIRA

Input:Training dataset D = {(x1,91), ..., (b}, Y|D|)}
Output:w
w=0
repeat
for i = 1to |D| do
Predict n-best hypotheses g1, ..., gn by w - ®(x;, §)
Update w by solving the constrained optimization
problem of Eq.(2)
end for
until Stop condition is met

structured learning algorithms: one based on MIRA and one
based on AROW.

3. Online structured learning using MIRA

In this paper, we define online discriminative training extended
to structured learning as online structured learning. Online
structured learning based on MIRA for g2p has been proposed
in [10]. When the i-th example (;, y;) and n-best hypotheses
Y1, ..., Yn produced by wi_1 - ®(x;,§) are given, it updates
the current weight vector w;_1 by solving the constrained op-
timization problem defined as

min ||w; — we—1]|
wy

st. Vg € {J1, ..., In} @

we - (P, yi) — D(xi,9)) > d(yi, §)

where w; indicates the weight vector after the update, and
d(y:,9) indicates the loss incurred by incorrectly classifying
y; as g. In g2p conversion, the source sequence x; and the
target sequence y; are a grapheme sequence and a phoneme se-
quence respectively, and the phoneme error rate of prediction is
used as the loss d(y;, §). As in Eq.(2), online structured learn-
ing based on MIRA employs n-best hypotheses g1, ..., §, in
training. MIRA finds the updated weight vector w; that cor-
rectly classifies the current example (x;,y;) with a sufficient
margin proportional to the loss of each hypothesis g1, ..., Un,
by using a quadratic programming solver. If there are many pa-
rameters to be optimized, the quadratic programming problem
is difficult to solve in terms of computation cost. For MIRA,
the number of parameters to be optimized is equal to the num-
ber of hypotheses employed in update. Therefore, to decrease
the computational cost, online learning is employed on MIRA
instead of batch learning.

The procedure of online structured learning based on MIRA
is shown in Algorithm 1. In [10], n-best hypotheses g1, ..., Un
are approximately predicted by beam-search pruning based on
a monotone phrasal decoder [15].

One known weakness of MIRA is that it is prone to overfit-
ting. Even if the current example is an outlier or noisy, MIRA
must classify the current example correctly, and will move the
weights as much as is necessary to do so. This can degrade sys-
tem performance by causing overfitting. In the next section, we
describe online structured learning based on AROW, which is
more robust in the face of overfitting compared with MIRA.

4. Proposed Approach based on AROW

AROW has been proposed to improve the Confidence Weight-
ed Algorithm (CW) [16, 17], which is an online discriminative
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training method for binary classification. In this section, we
first briefly describe CW and AROW for binary classification,
then describe our proposed approach, which extends AROW to
online structured learning.

4.1. CW and AROW

CW and AROW are online discriminative training methods for
binary classification. Both methods assume that the weight
vector w follows a multi-dimensional Gaussian distribution
N (p, 2) with mean g € R? and covariance matrix > € R%*<,
where d is the number of features in the model. During pre-
diction, CW and AROW employ the expectation of the weight
vector E[w] = p. By considering the variance and covariance,
CW and AROW control the amount each feature weight is up-
dated after each example. Because the current weight of the
features that have frequently occurred and been updated in the
past has high confidence, they are not moved excessively on any
update. In contrast, because the current weight of the features
that have rarely been updated in the past does not have high
confidence, they are widely moved on update. This property,
which MIRA does not have, prevents the weights that have high
confidence from widely moving in directions that degrade the
system performance in the presence of outliers.

When the i-th example (x;,y;) is given, CW obtains an
updated distribution N' (¢, 3¢ ) for the weight vector by solving
the constrained optimization problem defined as

(e, 2t)

—  min Dice (M (e, 2N (1, Bi-1))

Hie, St
S.t. PrwNN(M,gt)[yi('w . (El) > 0] > n (3)

where N (me—1,%¢—1) is the current distribution for the
weight vector, Dxr (N (pe, X¢)| [N (pe—1, Be—1)) indicates
the Kullback-Leibler (KL) divergence between the updated
distribution and the current distribution, and n € (0.5,1] is
a hyperparameter controlling the margin. Note that x; and
yi € {—1,+1} here indicate the i-th input vector and the i-th
correct label respectively, whereas in our description for struc-
tured learning we assume «; and y; to be the source sequence
and the target sequence respectively. As in Eq.(3), CW finds the
updated distribution that is closest to the previous distribution
while satisfying the constraint that the current example (@, y;)
is correctly classified with at least probability n € (0.5,1].
The learning of CW converges quickly, as the constraint of CW
forces CW to find the distribution that correctly classifies the
current example (x;, y;) with at least probability n € (0.5, 1].
However, like MIRA, this aggressive learning causes overfit-
ting, since CW has the possibility to widely move even a reli-
able weight to satisfy this constraint.

To avoid this problem of MIRA and CW, AROW recasts
terms for the constraint of CW as regularizers. The distribu-
tion found by AROW does not guarantee that the current exam-
ple (@i, y;) is correctly classified. However, the training data
comes closer to being correctly classified each time the distri-
bution is updated, and even when an outlier appears, AROW
does not widely move the reliable weights in a direction that
degrades the system performance.

AROW obtains the updated distribution for the weight vec-
tor by solving the unconstrained optimization problem defined
as

min D, (V (e, )|V (g1, Ze-1))

[

+%£h2 (331'7 Yis ltt) + %w?i}twi

(e, X)) =

“4)



where r is a hyperparameter that has the constraint > 0, and
controls the update amount for p and X. Also, £p,2 (@4, ys, pbt)
is the loss function defined as

®)

Solving Eq.(4) is equivalent to finding the distribution that de-
creases the loss function value and variances of each feature
that occurred, while avoiding changing the previous distribu-
tion as much as possible. In multiple binary classification tasks,
AROW has been shown to outperform CW and PA [13]. We
propose a method to extend AROW to structured learning in the
next sub-section.

Eh2 (wiv Yi, .U/t) = (max{07 1- yl(ut : :E’L)})2

4.2. Online structured learning based on AROW

Given the i-th example (x;, y;) and the hypothesis g, our pro-
posed approach for online structured learning using AROW ob-
tains a updated distribution N (¢, >¢) to minimize the objec-
tive function defined as

Dxr (N (pe, Bo) [NV (pe—1, 5e-1))
o ln2 (T, yi, Gr, o) + - uip Do (6)

L(H’f?Et) =

where w;j, is defined as ®(x;,y;) — @ (@i, Yx), r is a hy-
perparameter that has the constraint » > 0 as before. And
Ly2(xi, Yi, Yk, poe) is the loss function defined as

L
By partially differentiating Eq.(6) with g and setting this
derivative to 0 so that we minimize Eq.(6), the update formula
for .+ of online structured learning based on AROW is as fol-
lows:

éhz (mia Yi, 2}/% ,U/t) = (max{(), d(y% '!Jk) — Mt uzk})

max{0, d(yi, Yr) — pt - Wik }
ub S Ui+

®)

Yt 1Uik.

pe = pe—1 +

As the full covariance matrix can not be handled as the number
of features in g2p conversion is enormous, we assume 3; to be
a diagonal matrix, as is standard for traditional CW or AROW.
We partially differentiate the objective function of Eq.(6) with
the p-th diagonal element (), , of X: to obtain the update
formula for 3J;, and then we set the equation to be 0 as follows:

) o

8(Et)p7p
)

where (u;1)p indicates the p-th feature value of the w;,. We
arrange the above equation to solve (X¢), , as follows:

r(Xi1)p.p
7+ (k)3 (Ze-1)p,p '

L(pe, %) =

1( 1 B S (wir)y
2 (Et—l)p,p (Et)PaP r

(Et)p,p = (10)

Each diagonal element (X¢),,, for p = 1,...,d is updated by
Eq.(10). Also when £,,2 (@, yi, Uk, pe—1) is equal to 0, pre—1
and ¥;_ are not updated.

The procedure of online structured learning based on
AROW is shown in Algorithm 2. g and ¥ are initialized
with the zero vector and identity matrix respectively. From
(X0)pp = 1,7 > 0 and Eq.(10), (Zi—1)pp > (Z¢)p,p for

all ¢ holds. When (¢)p,, = 0, the p-th feature weight of
the p is fixed. Therefore, the convergence of Algorithm 2 is
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Algorithm 2 Online structured learning based on AROW

Input:Training dataset D = {(x1,y1), ..., (b}, Y|D|)}
Output: . as weight vector w
p=0x=1
repeat
for i = 1to |D| do
Predict n-best hypotheses g1, ..., Un by p - ®(x:, §)
for k = 1tondo
if £;,2 (:L'i7 Yi, Uk, p,) > 0 then
Update ¢ and ¥ by Eq.(8) and Eq.(10) respec-
tively
end if
end for
end for
until Stop condition is met

guaranteed. In Algorithm 2, n-best hypotheses 41, ..., g, are
also predicted by beam-search pruning based on a monotone
phrasal decoder [15], similarly to [10]. The update process for
the p and the ¥ in Algorithm 2 is similar to sequential up-
date proposed in Multi-Class CW [18]. The difference is that
it solves the unconstrained optimization problem over each hy-
pothesis, whereas the sequential update solves the constrained
optimization problem. Also, Algorithm 2 is an online learning
algorithm in accordance with MIRA. However, our proposed
approach can easily perform batch learning because it does not
solve quadratic programming problem.

5. Experiment and result

We evaluated our proposed structured learning approach using
AROW on a g2p task. Table 1 shows datasets employed in this
experiment; dataset name, vocabulary sizes of training data, de-
velopment data, and test data and the number of trials of cross-
validation. In this experiment, we employ the NETtalk dataset
which is the English dictionary obtained from the Pascal Letter-
to-Phoneme Conversion Challenge'. We attempted to faithfully
follow the convention in terms of data exclusion and data split in
[8], except extracting development data from training data. To
confirm that the structured learning approach based on AROW
is robust to overfitting, we also create a separate Noisy NETtalk
dataset, for which about 10% of the training data is artificial
noisy data that has been given a wrong pronunciation randomly
chosen from all pronunciations in NETtalk. In Noisy NETtalk,
the prediction performance of an approach that is not robust to
overfitting can be expected to degrade by overfitting the noisy
data.

We employed Sequitur® and DirecTL+® as baseline g2p
conversion tools in this experiment. Sequitur is based on the
generative model employing joint n-grams for graphemes and
phonemes. DirecTL+ uses online structured learning based on
MIRA. DirecTL+ and our proposed approach employed context
features, chain features, and joint n-gram features in accordance
with [11]. The transition feature introduced in [11] was not
used, as it was found to decrease performance in the NETtalk
task. For alignment, we used the unconstrained many-to-many
alignment method of [19] as implemented in mpaligner*. All
discriminative methods employ phoneme error rate as their loss

2

Thttp://pascallin.ecs.soton.ac.uk/Challenges/PRONALSYL/Datasets
2http://sequitur.info/

3http://code.google.com/p/directl-p/
“http://sourceforge.jp/projects/mpaligner/



Table 1: Dataset used in this experiment on the g2p task. g/p in-
dicates the number of grapheme and phoneme symbols. Noisy
indicates the number of artificial noisy data, which has been
given a wrong pronunciation randomly. For instance, Noisy
NETtalk includes 1760 noisy data of the total vocabulary size
17595. Dev indicates development data to determine various
training parameters. K-fold indicates the number of cross-

validation folds.
Dataset g/p Vocabulary size
Train (Noisy) | Dev | Test | K-fold
NETtalk 26/50 17595 (0) | 1000 | 1000 10
Noisy NETtalk | 26/50 | 17595 (1760) | 1000 | 1000 10

Table 2: Parameter settings were optimized for each method on
the development data, with the parameters employed at least
once in each cross-validation fold in bold.

Sequitur DirecTL+ This work
joint 5.6.7.8.9.10 F0119w Follgw
n-gram Sequitur Sequitur
context Follow
window ) 4.5.6 DirecTL+
n-best ) 135 Follow
hypotheses = DirecTL+
hyperpara- - - 500,1000,1500
meter r
beam width - 150 150

function. The context window size, joint n-gram size, hyper-
parameter r, n-best hypotheses on training, beam width for
beam-search pruning, and training iterations were determined
by phoneme error rate on the development data. Table 2 shows
their details. Also this experiment was performed on cluster
machines equipped with Intel Xeon E5649 2.53GHz.

Table 3 shows the evaluation result on NETtalk. It can be
seen that the proposed approach significantly outperformed Se-
quitur in terms of phoneme and word error rate. Compared with
DirectTL+, there was no significant difference in accuracy. On
the other hand, from the point of view of learning time, the
learning speed of our proposed approach was faster than Di-
recTL+. Since our proposed approach updates only once for
each hypothesis included in the n-best, the learning speed of
our proposed approach is faster than online structured learning
based on MIRA, which has to iteratively seek the w that satis-
fies the constraints in Eq.(2) by a quadratic programming solver.
This result indicates that our proposed approach is more suit-
able for learning from large dictionaries than online structured
learning based on MIRA.

Table 4 shows the evaluation result on Noisy NETtalk.
From Table 4, the performance degradation of our proposed ap-
proach on noisy data is less than that of DirecTL+. The dif-
ference between our proposed approach and DirecTL+ with re-
gards to PER is significant according to the paired t-test at a
level of 0.05. This result indicates that the structured learning
approach based on AROW resolves MIRA’s overfitting prob-
lems, as it does for binary classification.’

SIt can be noted that training time is significantly higher on noisy
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Table 3: Evaluation result in NETtalk. PER and WER indicate
phoneme error rate and word error rate respectively. Time indi-
cates learning time for each approach. “x” indicates the 90%
confidence interval.

PER(%) WER(%) | Time(hr.)
Sequitur | 7.63%+0.24 | 31.54%+0.80 | 1.1h=0.3
DirecTL+ | 6.75%+0.22 | 28.15%+0.76 | 8.6h=+1.5
This work | 6.75%=+0.20 | 28.56%-+0.62 | 4.7h-1.0

Table 4: Evaluation result in Noisy NETtalk. The difference
between this work and DirecTL+ for PER on this evaluation is
significant according to the paired t-test at a level of 0.05.

PER(%) WER(%) Time(hr.)
Sequitur | 9.78%+0.23 | 34.01%+0.85 | 3.3hL1.0
DirecTL+ | 10.33%+0.27 | 33.52%-+0.46 | 100.5h+12.1
This work | 9.79%-+0.45 | 33.02%=+0.95 | 78.1h+15.9

6. Conclusion

We extended AROW to online structured learning and evaluated
it on the g2p task. In an evaluation experiment, our proposed
approach achieved performance comparable to online struc-
tured learning based on MIRA offered by DirecTL+ in terms
of phoneme error rate and word error rate. On a dataset includ-
ing noisy data, our proposed approach outperformed DirecTL+
in terms of phoneme error rate. In addition, the learning speed
of our proposed approach was faster than DirecTL+. The re-
sult revealed that our proposed approach is more suitable for
learning from large dictionaries or dictionaries that are prone
to overfitting, such as dictionaries including a large amount of
noisy data, than online structured learning based on MIRA.

As future work, we will evaluate our approach with a larger
English or other language dataset. And, to further improve our
proposed approach, we will consider an approach that approxi-
mately handles the covariance between two features in X within
the limits of memory.
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