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Abstract
In this paper, we investigate the acoustic features that can
be modified to control the perceptual age of a singing voice.
Singers can sing expressively by controlling prosody and vocal
timbre, but the varieties of voices that singers can produce are
limited by physical constraints. Previous work has attempted
to overcome this limitation through the use of statistical voice
conversion. This technique makes it possible to convert singing
voice characteristics of an arbitrary source singer into those of
an arbitrary target singer. However, it is still difficult to intu-
itively control singing voice characteristics by manipulating pa-
rameters corresponding to specific physical traits, such as gen-
der and age. In this paper, we focus on controlling the perceived
age of the singer and, as a first step, perform an investigation of
the factors that play a part in the listener’s perception of the
singer’s age. The experimental results demonstrate that 1) the
perceptual age of singing voices corresponds relatively well to
the actual age of the singer, 2) speech analysis/synthesis pro-
cessing and statistical voice conversion processing don’t cause
adverse effects on the perceptual age of singing voices, and 3)
prosodic features have a larger effect on the perceptual age than
spectral features.
Index Terms: singing voice, voice conversion, perceptual age,
spectral and prosodic features, subjective evaluations.

1. Introduction
The singing voice is one of the most expressive components in
music. In addition to pitch, dynamics, and rhythm, the linguistic
information of the lyrics can be used by singers to express more
varieties of expression than other music instruments. Although
singers can also expressively control their voice characteristics
such as voice timbre to some degree, they usually have difficulty
in changing their own voice characteristics widely, (e.g. chang-
ing them into those of another singer’s singing voice) owing to
physical constraints in speech production. If it would be pos-
sible for singers to freely control voice characteristics beyond
these physical constraints, it will open up entirely new ways for
singers to express themselves.

In previous research, a number of techniques have been
proposed to change the characteristics of singing voices. One
typical method is singing voice conversion (VC) based on
speech morphing in the speech analysis/synthesis framework
[1]. This method makes it possible to independently morph sev-
eral acoustic parameters, such as spectral envelope, F0, and du-
ration, between singing voices of different singers or different
singing styles. One of the limitations of this method is that the

morphing can only be applied to singing voice samples of the
same song.

To make it possible to more flexibly change of singing voice
characteristics, statistical VC techniques [2, 3] have been suc-
cessfully applied to convert the source singer’s singing voice
into another target singer’s singing voice [4, 5]. In this method,
a conversion model is trained in advance using acoustic fea-
tures, which are extracted from a parallel data set of song pairs
sung by the source and target singers. The trained conversion
model makes it possible to convert the acoustic features of the
source singer’s singing voice into those of the target singer’s
singing voice in any song, keeping the linguistic information of
the lyrics unchanged. Furthermore, to develop a more flexible
singing VC system, eigenvoice conversion (EVC) techniques
[6] have been applied to singing VC [7]. In a singing VC sys-
tem based on many-to-many EVC [8], which is one particular
variety of EVC, an initial conversion model called the canon-
ical eigenvoice GMM (EV-GMM) is trained in advance using
multiple parallel data sets including song pairs of a single refer-
ence singer and many other singers. The EV-GMM is adapted
into arbitrary source and target singers by automatically esti-
mating a few adaptive parameters from the given singing voice
samples of those singers. Although this system is also capable
of flexibly changing singing voice characteristics by manipu-
lating the adaptive parameters even if no target singing voice
sample is available, it is difficult to achieve the desired singing
voice characteristics, because it is hard to predict the change
of singing characteristics caused by the manipulation of each
adaptive parameter.

In the area of statistical parametric speech synthesis [9],
there have been several attempts at developing techniques for
manually controlling voice quality of synthetic speech by ma-
nipulating intuitively controllable parameters corresponding to
specific physical traits, such as gender and age. Nose et al.
[10] proposed a method for controlling speaking styles in syn-
thetic speech with multiple regression hidden Markov models
(HMM). Tachibana et al. [11] extended this method to con-
trol voice quality of synthetic speech using a voice quality con-
trol vector assigned to expressive word pairs describing voice
quality, such as “warm – cold” and “smooth – non-smooth”. A
similar method has also been proposed in statistical VC [12].
Although these methods have only been applied to voice qual-
ity control of normal speech, it is expected that they would also
be effective for controlling singing voice characteristics.

In this paper, we focus on the perceptual age, or the age
that a listener predicts the singer to be, of singing voices as one
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of the factors to intuitively describe the singing voice. For nor-
mal speech, there is some research investigating acoustic feature
changes caused by aging. It has been reported that aperiodicity
of excitation signals tends to increase with aging [13]. A per-
ceptual age classification method to classify speech of elderly
people and non-elderly people using spectral and prosodic fea-
tures has also been developed [14]. On the other hand, the per-
ceptual age of singing voices has not yet been studied deeply.

As fully understanding the acoustic features that contribute
to the perceptual age of singing voices is essential to the de-
velopment of VC techniques to modify a singer’s perceptual
age, in this paper we perform an investigation of the acous-
tic features that play a part in the listener’s perception of the
singer’s age. We conduct several types of perceptual evaluation
to investigate 1) how well the perceptual age of singing voices
corresponds to the actual age of the singer, 2) whether or not
singing VC processing causes adverse effects on the perceptual
age of singing voices, and 3) whether spectral or prosodic fea-
tures have a larger effect on the perceptual age.

2. Statistical singing voice conversion
Statistical singing VC (SVC) consists of a training process and
a conversion process. In the training process, a joint proba-
bility density function of acoustic features of the source and
target singers’ singing voices is modeled with a GMM using
a parallel data set in the same manner as in statistical VC for
normal voices [5]. As the acoustic features of the source and
target singers, we employ 2D-dimensional joint static and dy-
namic feature vectors Xt = [x⊤

t ,∆x⊤
t ]

⊤ of the source and
Y t = [y⊤

t ,∆y⊤
t ]

⊤ of the target consisting of D-dimensional
static feature vectors xt and yt and their dynamic feature vec-
tors ∆xt and ∆yt at frame t, respectively, where ⊤ denotes
the transposition of the vector. Their joint probability density
modeled by the GMM is given by

P (Xt,Y t|λ)

=

M∑
m=1

αmN

([
Xt

Y t

]
;

[
µ(X)

m

µ(Y )
m

]
,

[
Σ

(XX)
m Σ

(XY )
m

Σ
(Y X)
m Σ

(Y Y )
m

])
, (1)

where N (·;µ,Σ) denotes the normal distribution with a mean
vector µ and a covariance matrix Σ. The mixture component
index is m. The total number of mixture components is M . λ
is a GMM parameter set consisting of the mixture-component
weight αm, the mean vector µm, and the covariance matrix
Σm of the m-th mixture component. A GMM is trained using
joint vectors of Xt and Y t in the parallel data set, which are
automatically aligned to each other by dynamic time warping.

In the conversion process, the source singer’s singing voice
is converted into the target singer’s singing voice with the GMM
using maximum likelihood estimation of speech parameter tra-
jectory [3]. Time sequence vectors of the source features and
the target features are denoted as X = [X⊤

1 , · · · ,X⊤
T ]

⊤ and
Y = [Y ⊤

1 , · · · ,Y ⊤
T ]

⊤ where T is the number of frames in-
cluded in the time sequence of the given source feature vec-
tors. A time sequence vector of the converted static features
ŷ = [ŷ⊤

1 , · · · , ŷ
⊤
T ]

⊤ is determined as follows:

ŷ = argmax
y

P (Y |X,λ) subject to Y = Wy, (2)

where W is a transformation matrix to expand the static fea-
ture vector sequence into the joint static and dynamic feature
vector sequence [15]. The conditional probability density func-
tion P (Y |X,λ) is analytically derived from the GMM of the

joint probability density given by Eq. (1). To alleviate the over-
smoothing effects that usually make the converted speech sound
muffled, global variance (GV) [3] is also considered in conver-
sion.

3. Investigation of acoustic features
affecting perceptual age

In the traditional SVC [5, 7], only the spectral features such as
mel-cepstrum are converted. It is straightforward to also convert
the aperiodic components [16], which capture noise strength on
each frequency band of the excitation signal, as in the traditional
VC for natural voices [17]. If the perceptual age of singing
voices is captured well by these acoustic features, it will make it
possible to develop a real-time SVC system capable of control-
ling the perceptual age of singing voices by combining the voice
quality control based on statistical VC [12] and real-time statis-
tical VC techniques [18, 19]. On the other hand, if the percep-
tual age of singing voices is not captured well by these acoustic
features, which mainly represent segmental features, the con-
version of other acoustic features, such as prosodic features
(e.g., F0 pattern), will also be necessary. In such a case, the
voice-quality control framework of HMM-based speech synthe-
sis [10, 11] can be used in the SVC system to control the per-
ceptual age of singing voices, although it is not straightforward
to develop a real-time SVC system in this framework. Because
the synthesis technique that must be used will change according
to the acoustic features to be converted, it will be highly bene-
ficial to make clear which acoustic features need to be modi-
fied to control the perceptual age of singing voices. To do so,
we compare the perceptual age of natural singing voices with
that of several types of synthesized singing voices by modify-
ing acoustic features as shown in Table 1.

3.1. Analysis/synthesis with aperiodic components (w/ AC)
In the analysis/synthesis framework, a voice is first converted
into parameters of the synthesis model described in Section 2,
then simply re-synthesized into a waveform using these param-
eters without change. As analysis and synthesis are necessary
steps in converting acoustic features of singing voices, we in-
vestigate the effects of distortion caused by analysis/synthesis
on the perceptual age of singing voices. STRAIGHT [20] is a
widely used high-quality analysis/synthesis method, so we use
it to extract acoustic features consisting of mel-cepstrum, F0,
and aperiodic components.

3.2. Analysis/synthesis without aperiodic components (w/o
AC)
As mentioned above, previous research [13] has shown that ape-
riodic components tend to change with aging in normal speech
as mentioned above. We investigate the effects of aperiodic
components on the perceptual age of singing voices. Analy-
sis/synthesized singing voice samples are reconstructed from
mel-cepstrum and F0 extracted with STRAIGHT. In synthe-
sis, only a pulse train with phase manipulation [20] instead of
STRAIGHT mixed excitation [17] is used to generate voiced
excitation signals.

3.3. Intra-singer SVC
In SVC, conversion errors are inevitable. For example, some
detailed structures of acoustic features not well modeled by
the GMM of the joint probability density and often disappear
through the statistical conversion process. Therefore, the acous-
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Table 1: Acoustic features of several types of synthesized singing voices.
Features Analysis/synthesis (w/ AC) Analysis/synthesis(w/o AC) Intra-singer SVC SVC

Mel-cepstrum Source singer Source singer Converted to source singer Converted to target singer
Aperiodic components Source singer None Converted to source singer Converted to target singer

Power, F0, duration Source singer Source singer Source singer Source singer

tic space on which the converted acoustic features are dis-
tributed tends to be smaller than the acoustic space that of the
natural acoustic features. We investigate the effect of the con-
version errors caused by this acoustic space reduction on the
perceptual age of singing voices by converting one singer’s
singing voice into the same singer’s singing voice. This SVC
process is called intra-singer SVC in this paper.

To achieve intra-singer SVC for a specific singer, we must
create a GMM to model the joint probability density of the
same singer’s acoustic features, i.e., P (Xt,X

′
t|λ) where Xt

and X ′
t respectively show the source and target acoustic fea-

tures of the same singer, needs to be developed. Note that
Xt is different from X ′

t, they depend on each other, and both
are identically distributed. This GMM is analytically derived
from the GMM of the joint probability density of the acous-
tic features of the same singer and another reference singer,
i.e., P (Xt,Y t|λ) where Xt and Y t respectively show the
source feature vector of the same singer and that of the refer-
ence singer, by marginalizing out the acoustic features of the
reference singer in the same manner as used in the many-to-
many EVC [7, 8] as follows:

P
(
Xt,X

′
t|λ
)
=

M∑
m=1

P (m|λ)
∫

P (Xt|Y t,m,λ)

P
(
X ′

t|Y t,m,λ
)
P (Y t|m,λ) dY t

=
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m=1

αmN

([
Xt

X ′
t

]
;

[
µ(X)

m

µ(X)
m

]
,

[
Σ

(XX)
m Σ

(XY X)
m

Σ
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m Σ

(XX)
m

])
, (3)

Σ(XY X)
m = Σ(XY )

m Σ(Y Y )
m

−1
Σ(Y X)

m . (4)

Using this GMM, intra-singer SVC is performed in the same
manner as described in Section 2. The converted singing voice
sample essentially has the same singing voice characteristics as
those before the conversion although they suffer from conver-
sion errors.

3.4. SVC
To investigate which acoustic features have a larger effect on the
perceptual age of singing voices, segmental features or prosodic
features, we use the SVC for converting only segmental fea-
tures, such as mel-cepstrum and aperiodic components, of a
source singer into those of a different target singer. The con-
verted singing voice samples essentially have the segmental fea-
tures of the target singer and the prosodic features, such as F0

patterns, power patterns, and duration, of the source singer.

4. Experimental evaluation
4.1. Experimental conditions
In our experiments, we first investigated the correspondence
between the perceptual age and the actual age of the singer.
As test stimuli, we used all singing voices in the AIST hum-
ming database [21] consisting of singing voices of songs with
Japanese lyrics sung by Japanese male and female amateur
singers in their 20s, 30s, 40s, and 50s. The total number of
the singers was 75. Each singer sang 25 songs. The length of

each song was approximately 20 seconds. One Japanese male
subject was asked to guess the age of each singing voice by lis-
tening to it.

In the second experiment, we investigate the acoustic fea-
tures that affect the perceptual age of singing voices, by com-
paring the perceptual age of natural singing voices with that
of each type of synthesized singing voice as shown in Table 1.
Eight Japanese male subjects in their 20s assigned a perceptual
age to each synthesized singing voice. To reduce the subjects’
burden, one Japanese song (No. 39) that showed the highest
correlation between the perceptual age and the actual age in the
first evaluation was selected to be evaluated. Moreover, we se-
lected 16 singers consisting of four singers (two male singers
and two female singers) from each age group, i.e., their 20s, 30s,
40s, or 50s, who showed good correlation between the percep-
tual age and their actual age. The subjects were separated into
two groups, A and B. The singers were also separated into two
groups, A and B, so that one group always includes one male
singer and one female singer in each age group. The subjects in
each group evaluated only singing voices of the corresponding
singer group.

The sampling frequency was set to 16 kHz. The 1st through
24th mel-cepstral coefficients extracted by STRAIGHT analysis
were used as spectral features. As the source excitation features,
we used F0 and aperiodic components in five frequency bands,
i.e., 0–1, 1–2, 2–4, 4–6, and 6–8 kHz, which were also extracted
by STRAIGHT analysis. The frame shift was 5 ms.

As training data for the GMMs used in intra-singer SVC
and SVC, we used 18 songs including the evaluation song (No.
39). In the intra-singer SVC, GMMs for converting the mel-
cepstrum and aperiodic components were trained for each of
the selected 16 singers. Another singer not included in these
16 singers was used as the reference singer to create each par-
allel data set for the GMM training. In the SVC, the GMMs
for converting mel-cepstrum and aperiodic components were
trained for all combinations of the source and target singer pairs
in each singer group. The numbers of mixture components of
each GMM were optimized experimentally.

4.2. Experimental results
Figure 1 shows the correlation between the perceptual age of
natural singing voices and the actual age of the singer. Each
point shows the actual age of one singer and the average of the
perceptual ages over all different songs sung by the same singer.
The correlation coefficient is 0.79. These results show quite
high correlation between the perceptual age and the actual age.

Table 2 shows average values and standard deviations of
differences between perceptual age of natural singing voices
and each type of intra-singer synthesized singing voice: anal-
ysis/synthesis (w/ AC), analysis/synthesis (w/o AC) and the
intra-singer SVC. The table also shows correlation coefficients
between the perceptual age of natural and synthesized voices.
From the results, we can see that in analysis/synthesis (w/ AC),
the perceptual age difference is small and the correlation co-
efficient is very high. Therefore, distortion caused by analy-
sis/synthesis processing does not affect the perceptual age. It
can be observed from analysis/synthesis (w/o AC) that this re-
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Table 2: Differences of the perceptual age between natural singing voices and each type of the synthesized singing voices.
Methods Average Standard deviation Correlation coefficient

Analysis/synthesis (w/ AC) 0.77 3.57 0.96
Analysis/synthesis (w/o AC) 0.44 3.58 0.96

Intra-singer SVC -0.50 7.25 0.85
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Figure 1: Correlation between singer’s actual age and percep-
tual age.

sult does not change even if not using aperiodic components.
Therefore, aperiodic components do not affect the perceptual
age of singing voices. On the other hand, intra-singer SVC
causes slightly larger differences between natural singing voices
and the synthesized singing voices. Therefore, some acoustic
cues to the perceptual age are removed through the statistical
conversion processing. Nevertheless, the perceptual age differ-
ences are relatively small, and therefore, it is likely that im-
portant acoustic cues to the perceptual age are still kept in the
converted acoustic features.

Figures 2 and 3 show a comparison between the perceptual
age of singing voices generated by SVC and intra-singer SVC.
In each figure, the vertical axis shows the perceptual age of con-
verted singing voices by SVC (prosodic features: source singer,
segmental features: target singer). The horizontal axis in Fig. 2
shows the perceptual age of singing voices generated by intra-
singer SVC (prosodic features: source singer, segmental fea-
tures: source singer) and that in Fig. 3 shows the perceptual age
of singing voices generated by intra-singer SVC (prosodic fea-
tures: target singer, segmental features: target singer). There-
fore, if the prosodic features more strongly affect the perceptual
age than the segmental features, a higher correlation will be ob-
served in Fig. 2. If the segmental features more strongly affect
the perceptual age than the prosodic features, a higher correla-
tion will be observed in Fig. 3 than in Fig. 2. These figures
demonstrate that 1) the segmental features affect the perceptual
age but the effects are limited as shown in positive but weak
correlation in Fig. 3 and 2) the prosodic features have a larger
effect on the perceptual age than the segmental features.

5. Conclusions
In this paper, we have investigated the acoustic features that
affect the perceptual age of singing voices. To factorize the ef-
fect of several acoustic features on the perceptual age of singing
voices, several types of synthetic singing voices were con-
structed and evaluated. The experimental results have demon-
strated that 1) statistical voice conversion processing has only a
small effect on the perceptual age of singing voices and 2) the
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Figure 2: Correlation of perceptual age between singing voices
generated by the intra-singer SVC and the SVC if setting hori-
zontal axis to the perceptual age of the source singers.
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Figure 3: Correlation of perceptual age between singing voices
generated by the intra-singer SVC and the SVC if setting hori-
zontal axis to the perceptual age of the target singers.

prosodic features more strongly affect the perceptual age than
the segmental features. We plan to further study a conversion
technique for controlling the perceptual age of singing voices.
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