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Abstract
In this paper, we evaluate our proposed singing voice conver-
sion method from various perspectives. To enable singers to
freely control their voice timbre of singing voice, we have pro-
posed a singing voice conversion method based on many-to-
many eigenvoice conversion (EVC) that enables to convert the
voice timbre of an arbitrary source singer into that of another
arbitrary target singer using a probabilistic model. Further-
more, to easily develop training data consisting of multiple par-
allel data sets between a single reference singer and many other
singers, a technique for efficiently and effectively generating
the parallel data sets from nonparallel singing voice data sets of
many singers using a singing-to-singing synthesis system have
been proposed. However, we have never conducted sufficient
investigations into the effectiveness of these proposed methods.
In this paper, we conduct both objective and subjective eval-
uations to carefully investigate the effectiveness of proposed
methods. Moreover, the differences between singing voice con-
version and speaking voice conversion are also analyzed. Ex-
perimental results show that our proposed method succeeds in
enabling people to control their own voice timbre by using only
an extremely small amount of the target singing voice.
Index Terms: singing voice, voice conversion, eigenvoice con-
version, singing-to-singing synthesis, performance evaluation

1. Introduction
Range of singing voice timbre that can be produced by indi-
vidual singers is limited by physical constraints. To produce
a singing voice beyond physical constraints, many approaches
have been studied. One of the most popular approaches is
the use of singing synthesis systems, which generate a singing
voice from several pieces of information such as lyrics and
the musical score. Among them, a text-to-singing approach,
which synthesizes a singing voice from note-level score infor-
mation of the melody with its lyrics, such as Vocaloid2 [1] and
Sinsy [2] is popular in Japan. Moreover, singing-to-singing syn-
thesis, which automatically synthesizes a more naturally sound-
ing singing voice by estimating the parameters of the text-
to-singing system from a target singing voice, has been pro-
posed [3]. VocaListener [3], which is the system used for the
estimation part of singing-to-singing synthesis, estimates pa-
rameters of pitch and dynamics for the singing synthesis system
so that the synthesized singing voice becomes more similar to
the target singing voice. If a user’s singing voice and the cor-
responding lyrics without any score information are available,
VocaListener can synchronize them automatically to determine
the musical note corresponding to each phoneme of the lyrics.
However, it is still difficult to generate singing voices with arbi-
trary and desired voice timbre.

To make it possible for people to directly sing with a dif-
ferent specific voice timbre, and thus overcome physical con-
straints, singing voice conversion has been proposed [4]. Statis-
tical voice conversion (VC) techniques [5, 6, 7] are used to con-
vert the singing voice timbre of a source singer into that of a tar-
get singer. In this technique, Gaussian mixture model (GMM)
of the joint probability density of an acoustic feature between
the source singer’s singing voice and the target singer’s singing
voice is trained in advance using a special data set, called a par-
allel data set, that consists of pairs of songs of the two singers.
The trained model is capable of converting the acoustic fea-
tures of the source singer’s singing voice into those of the target
singer’s singing voice for any song while keeping the linguis-
tic information of the lyrics unchanged. Moreover, real-time
singing voice conversion can also be achieved using the low-
delay conversion algorithm [8].

Towards realizing a more flexible singing voice conver-
sion technique, we have proposed a singing voice conver-
sion method [9] based on many-to-many eigenvoice conversion
(EVC) [10]. Many-to-many EVC is a technique of converting
from the voice of an arbitrary source singer into that of an ar-
bitrary target singer. An eigenvoice GMM (EV-GMM) [11] is
trained in advance using multiple parallel data sets that con-
sist of a single predefined singer, called a reference singer in
this paper, and many prestored target singers. The EV-GMM
is capable of easily adapting the source/target voice timbre to
that of its given voice samples in a text-independent (lyrics-
independent) manner. Furthermore, we have proposed a tech-
nique for efficiently and effectively generating parallel data sets
using a singing-to-singing synthesis system to artificially gen-
erate singing voices of the reference singer.

In this paper, we describe our proposed methods [9] and
evaluate their effectiveness. A comparison between VC and
EVC based singing voice conversion is conducted from vari-
ous perspectives. Moreover, to analyze the differences between
speaking voice and singing voice in voice conversion, we con-
duct comparison between singing voice conversion using EV-
GMM trained from speaking voice and from singing voice.

2. Singing voice conversion based on
many-to-many EVC

In this section, we describe singing voice conversion method
based on many-to-many EVC and training data generation using
singing-to-singing synthesis system.

2.1. Training data generation
The development of parallel data sets consisting of singing
voice pairs of the single reference singer and many prestored
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target singers is laborious work. To address this issue, we
have artificially generated singing voices of the reference singer
by applying a singing-to-singing synthesis system to singing
voices of many prestored target singers. In this approach, we
need to prepare only singing voices of multiple prestored target
singers who need not sing the same song; these are available in
existing databases, such as the RWC Music Database [12]. For
the singing voices of each prestored target singer, corresponding
singing voices of the reference singer are artificially generated
by using the singing-to-singing synthesis system. Thus, this
training data generation approach can efficiently and effectively
develop parallel data sets without recording singing voices of
the reference singer.

2.2. Training process
As acoustic features of the reference singer and the sth pre-
stored target singer, we employ two D-dimensional joint fea-

tures, Xt = [x>t ,∆x
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t ]> and Y (s)
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consisting of D-dimensional static and dynamic spectral fea-
tures at frame t, respectively, where> denotes the transposition
of the vector. The joint probability density of reference and tar-
get features is modeled with the EV-GMM as follows:

P (Xt,Y
(s)
t |λ

(EV ),w(s))

=

M∑
m=1

αmN
(

[X>t ,Y
(s)
t

>
]>;µ(s)

m ,Σ(X,Y )
m

)
, (1)

µ(s)
m =

[
µ(X)
m

Amw
(s) + bm

]
,Σ(X,Y )

m =

[
Σ

(XX)
m Σ

(XY )
m

Σ
(YX)
m Σ

(Y Y )
m

]
, (2)

where w(s) = [w(s)(1), · · · , w(s)(J)]> is the target-speaker-
dependent weight parameter for controlling target voice tim-
bre. λ(EV ) is a canonical EV-GMM parameter set consisting
of the weight αm, the mean vector µ(X)

m , the covariance ma-
trix Σ

(X,Y )
m , the bias vector bm, and the basis vectors Am =

[am(1), · · · ,am(J)] for the mth mixture component, where
the number of basis vectors is J . Acoustic features of an ar-
bitrary target speaker are modeled by setting only w(s) to the
speaker’s specific values. To alleviate the degradation of per-
formance of EV-GMM caused by effects of acoustic variation
of the many prestored target singers, the EV-GMM is trained by
speaker adaptive training (SAT) [13, 14] using multiple parallel
data sets consisting of utterance pairs of a reference and many
prestored target singers.

2.3. Adaptation and conversion process
In the adaptation process, the EV-GMM is adapted to an ar-
bitrary source singer and an arbitrary target singer by inde-
pendently estimating the singer-dependent weight parameter
using a few singing voice samples. The weight parameter
for source singer ŵ(i) is estimated by maximum a posteri-
ori (MAP) [15, 16] as
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w
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where λ(ω) is a model parameter set consisting of the mean vec-
torµ(w) and the covariance matrix Σ(ω). This model parameter
set is trained in advance using a set of weight parameters esti-

mated for individual prestored target singer. Y (i)
t is the acoustic

features of the given source singer’s voice at frame t. The bal-
ance between P

(
w|λ(w)

)
and
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)
is

controlled by the hyperparameter τ . The weight parameter for
the target singer ŵ(o) is estimated in the same manner. On the
other hand, our proposed method allows user to freely control
voice timbre of the converted singing voice by manipulating the
target singer’s weight parameters.

Then, the joint probability density of the acoustic features
between the source singer’s voice and the target singer’s voice
is derived as
P
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In the conversion process, the converted static feature sequence
vector is estimated using the adapted EV-GMM. Maximum
likelihood estimation considering dynamic features and a global
variance [6] is adopted. Note that real-time singing voice con-
version is also achieved by using the low-delay conversion al-
gorithm [8].

3. Experimental evaluations
To demonstrate effectiveness of our proposed method and in-
vestigate the differences between singing voice conversion and
speaking voice conversion, four types of conversion model were
compared.

VC conventional singing voice conversion based on VC [6]

EVC-human proposed singing voice conversion based on
many-to-many EVC with conventional training data gen-
eration using a human voice as the reference singer’s
voice

EVC-synth proposed singing voice conversion based on
many-to-many EVC with training data generation using
singing-to-singing synthesis

EVC-speaking conventional many-to-many EVC for a speak-
ing voice

3.1. Experimental conditions
In this evaluation, only the spectral feature is converted in all
conversion methods because the voice timbre strongly depends
on the spectral feature. The 1th to 24th mel-cepstral coefficients
were used as a spectral feature. STRAIGHT analysis [17] was
employed to extract these coefficients from singing voices. F0

and the aperiodic components of the source singer are directly
used to synthesize the converted singing voice. The shift length
was 5 ms and the sampling frequency was 16000 Hz.

We used the solo singing voices of 30 Japanese songs in the
RWC Music Database [12] as the prestored target singing voices
to train EV-GMM. The phoneme balance was not considered in
these songs. For EVC-human, the solo singing voices of one
male singer were used as the singing voices of the reference
singer. For EVC-synth, singing voices synthesized using the
singing-to-singing synthesis system VocaListener with a singer
database called Hatsune Miku [18] based on Vocaloid2 were
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used as the reference singer. The number of basis vectors of
the EV-GMMs was set to 29 and the number of mixture com-
ponents of the EV-GMMs was set to 128. On the other hand,
in EVC-speaking, we used parallel data sets of a single refer-
ence male speaker and 152 prestored target speakers to train
the EV-GMM. These speakers were from the Japanese News-
paper Article Sentence (JNAS) database. Each prestored target
speaker uttered one of seven subsets. Each subset consists of
50 phonetically balanced sentences. The EV-GMM for spectral
conversion was trained from 152 parallel data sets consisting of
the recorded reference speaking voices and the prestored target
speaking voices. The number of basis vectors of the EV-GMMs
was set to 151 and the number of mixture components of the
EV-GMMs was set to 128.

For the adaptation and testing of the EV-GMMs and for the
training and testing of the GMM, we selected two Japanese
songs from the RWC Music Database (RWC-MDB-P-2001
No.46 and No.76), which were not included in the above 30
songs. Then, 5 singers (four male singers and one female
singer) sang these two songs. Thus, as adaptation/training data
and test data, we prepared 10 songs consisting of two songs
sung by each singer. As the training data for the VC-based
method and the adaptation data for the EVC-based methods,
2, 4, 8, 16, 32, or 64% of the sung parts of songs sung by the
source and target singers was used, then, the remaining 36%
of data was used for the test. The GMM and EV-GMMs were
prepared for all combinations of the source and target singers.
Thus, for each method, 20 conversion models (10 models ×
2 song) were prepared. The weight parameters of the source
and target singer were independently estimated using the spec-
tral features from the source and target singing voice samples.
The hyperparameter of MAP adaptation shown in eq. (3) was
preliminarily optimized in each method. In this evaluation, it
was set to 250, 1000, and 100 for EVC-human, EVC-synth, and
EVC-speaking, respectively. For VC, we also trained a standard
GMM for spectral conversion using a parallel data set consist-
ing of the source and target singing voices. The number of mix-
ture components of the GMM was preliminarily optimized so
that the spectral conversion accuracy was maximized in the test
data.

3.2. Objective evaluation
We evaluated two conditions of song setting: 1) the same-
song condition, where the same song is used in both the train-
ing/adaptation process and the test process, and 2) the different-
song condition, where different songs are used in the train-
ing/adaptation process and the test process. Figure 1 shows mel-
cepstral distortion as a function of the amount of the singing
voice adaptation data used in the EVC-based methods or the
amount of parallel data of the singing voice pairs used in the
VC-based method under the same-song condition. Figure 2
shows those under the different-song condition. In fig. 1 and 2,
horizontal axis represents percentage of data that is used for
training or adaptation from the sung parts of songs.

Under the same-song condition, when using a small amount
of training/adaptation data, EVC-speaking is the best, EVC-
human is the next, EVC-synth is the next, and VC is the worst
in conversion accuracy. Although EVC-speaking exhibits the
highest conversion accuracy, the differences from EVC-human
are not so large even if the amount of training data for EVC-
speaking is significantly larger than that for EVC-human. When
using a large amount of training/adaptation data, VC is the best,
EVC-speaking is the next, EVC-human is the next, and the
EVC-synth is the worst in conversion accuracy. Note that the
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Figure 1: Mel-cepstral distortion as a function of amount of
target singing voice data (i.e., singing voice pairs in VC-based
method or singing voice adaptation data in EVC-based meth-
ods) under the same-song condition.
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Figure 2: Mel-cepstral distortion as a function of amount of
target singing voice data (i.e., singing voice pairs in VC-based
method or singing voice adaptation data in EVC-based meth-
ods) under the different-song condition.

EVC-based methods do not require the use of parallel data in
the adaptation, in contrast to VC.

Under the different-song condition, VC has much lower
conversion accuracy than under the same-song condition. This
is because the voice timbre of the singing voice of a singer sig-
nificantly changes depending on the song. On the other hand,
it is observed that the EVC-based methods reduce this degrada-
tion. Since the EV-GMM is trained with many singers’ voices,
it is more robust against variations of the singing voice timbre.

3.3. Subjective evaluation
We conducted an opinion test on the naturalness of the singing
voice and a preference test on singer individuality. The opin-
ion was expressed using a five point scale (i.e., 1 (very poor) to
5 (excellent)). In this test, 10 listeners heard 16 types of con-
verted singing voice sample, then they judged the naturalness
of each sample using the opinion score. In the preference test,
listeners heard a target singing voice sample and two converted
singing voice samples, then they chose the converted singing
voice sample with more similar singer individuality to the tar-
get singing voice sample. The preference test was performed
under the different-song condition because of its greater real-
ism than same-song condition. In this tests, 9 listeners evaluated
eight types of the singing voice generated under the different-
song condition for all combinations of 2% or 64% of train-
ing/adaptation data and four types of conversion method.

Figure 3 shows the result of the opinion test on the natu-
ralness of the singing voice. Under the same condition, VC us-
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Figure 3: Result of opinion test on naturalness.
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Figure 4: Result of preference test on singer individuality under
the different-song condition.

ing 2% training data shows similar naturalness to that of EVC-
human using 2% adaptation data in contrast to objective eval-
uation. On the other hand, the naturalness of EVC-speaking
is not higher than that of other methods when using a small
amount of adaptation data. This result suggests that it is difficult
for EV-GMM trained with speaking voice to generate converted
singing voice having high naturalness even if a large amount of
speaking voice is available as training data. Other results show
similar tendency to that observed in the result of the objective
evaluation.

Figure 4 shows the result of the preference test on singer
individuality. The preference score was calculated as the ratio
of the number of samples selected as having better singer in-
dividuality to the number of samples presented to the listeners.
When using a small amount of training/adaptation data, EVC-
human is the best, EVC-synth is the next, EVC-speaking is the
next, and VC is the worst in preference score of singer individ-
uality. On the other hand, when using a large amount of train-
ing/adaptation data, VC and EVC-speaking show higher prefer-
ence score of singer individuality than other methods. Note that
VC requires the parallel data set of the source and target singers
and the canonical EV-GMM of EVC-speaking is trained with
significantly larger amount of training data than that of EVC-
human and EVC-synth.

3.3.1. Comparison of each EV-GMMs
Figure 5 shows the cumulative distribution of occupancies of
the canonical EV-GMM of EVC based methods. These individ-
ual mixture component occupancies have been calculated from
all parallel data set in training process with SAT. In this figure,
we can see that the occupancies of EVC-human and EVC-synth
are more biased than that of EVC-speaking. Although the EV-
GMM needs to model wide varieties of acoustic features of all
prestored target speakers, this result shows that some mixture
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Figure 5: Cumulative occupancy probability for all parallel
data set using several models.

components of EVC-human and EVC-synth model only acous-
tic features of a part of prestored target speakers. Consequently,
it is expected that phonemic information and speaker individ-
uality were not separated well in them. It is possible that this
issue causes degradation of conversion performance.

The above results suggest that 1) the proposed EVC-human
yields better conversion performance than VC when a small
amount of singing voice data of the source and target singers
is available, 2) the conversion performance of the proposed
EVC-synth is slightly degraded than EVC-human, 3) since
these proposed methods are robust against variations of the
singing voice timbre often observed between different songs,
they work reasonably well even when different songs are used
in the adaptation and conversion processes, 4) the occupancies
of individual mixture component of EV-GMM in EVC-human
and EVC-synth are more biased than those in EVC-speaking,
and then, this causes degradation of conversion accuracy for
singer individuality, 5) the differences between a speaking voice
and singing voice strongly affects to naturalness of converted
singing voice. Based on these results, to more correctly control
the voice timbre, it is necessary to train EV-GMM from larger
parallel data sets considering phoneme balance. And then, it is
expected that training data generation using singing-to-singing
synthesis is significantly effective to construct them.

4. Conclusion
In this paper, we evaluated our proposed singing voice conver-
sion methods. Our proposed methods are capable of converting
the singing voice timbre of an arbitrary source singer into that
of an arbitrary target singer by adapting a small number of adap-
tive parameters of a conversion model using an extremely small
amount of source and target singing voice data. Moreover, our
proposed training data generation method can alleviate the bur-
den of having to record singing voices to develop parallel data
sets, by using a singing-to-singing synthesis system. The ex-
perimental result demonstrated that the proposed methods en-
able the effective conversion of a singing voice between an ar-
bitrary singer pair even when using only several seconds of their
singing voices as adaptation data. We plan to construct larger
parallel data sets considering phoneme balance and further im-
prove conversion performance.
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