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Abstract
This paper describes our English Speech-to-Text (STT) systems for
the 2012 IWSLT TED ASR track evaluation. The systems consist
of 10 subsystems that are combinations of different front-ends, e.g.
MVDR based and MFCC based ones, and two different phone sets.
The outputs of the subsystems are combined via confusion network
combination. Decoding is done in two stages, where the systems
of the second stage are adapted in an unsupervised manner on the
combination of the first stage outputs using VTLN, MLLR, and cM-
LLR.

Index Terms: speech recognition, IWSLT, TED talks, evaluation
system, system development

1. Introduction
The International Workshop on Spoken Language Translation
(IWSLT) offers a comprehensive evaluation campaign on spoken
language translation. One part of the campaign focuses on the trans-
lation of TED Talks1, short 5-25min presentations by people from
various fields related in some way to Technology, Entertainment,
and Design (TED) [1]. In order to evaluate different aspects of this
task IWSLT organizes several evaluation tracks on this data cov-
ering the aspects of automatic speech recognition (ASR), machine
translation (MT), and the full-fledged combination of the two of
them into speech translation systems.

The goal of the TED ASR track is the automatic transcription
of TED lectures on a given segmentation, in order to interface with
the machine translation components in the speech-translation track.
The quality of the resulting transcriptions are measured in word er-
ror rate (WER).

In this paper we describe our English ASR systems with which
we participated in the TED ASR track of the 2012 IWSLT evalu-
ation campaign. This year, our system is a further development of
our last year’s evaluation system [2] and makes use of system com-
bination and cross-adaptation, by utilising acoustic models which
are trained with different acoustic front-ends and employ two dif-
ferent phoneme sets. In addition to last year, we also included TED
talks available via TED’s website by training on them in a slightly
supervised manner.

We submitted two primary systems. One was solely developed
by KIT, the other one was developed in cooperation with NAIST in
Japan. A description of the additional work done by NAIST on the
KIT-NAIST (contrastive) submission can be found in [3].

On the 2011 evaluations set, which serves as a progress test
set, we were able to reduce the word error rate of our transcription

1http://www.ted.com/talks

Text corpus Word Count sources

IWSLT training data transcripts 3 million 2
News (+news commentary) 2114 million 4
Parallel Giga Corpus 523 million 1
LDC English Gigaword 4 1800 million 6
UN + Europarl documents 376 million 1

Google Books Ngrams (subset) 1000 million ngrams 1

total 4816 million 15

Table 1: Language Model training data word count per corpus after
cleaning and data selection and number of text sources included in
corpus. The total word count does not include the Google Books
Ngrams.

systems from 17.1% to 12.0%, a relative reduction of 29.8%. On
the 2012 evaluation set, the KIT-NAIST primary system reached a
WER of 12.4%.

The rest of this paper is structured as follows. Section 2 de-
scribes the data that our system was trained on. This is followed
by Section 3 which provides a description of the two acoustic front-
ends used in our system. An overview of the techniques used to
build our acoustic models is given in Section 4. We describe the
language model used for this evaluation in Section 5 and our decod-
ing strategy and results are presented in Section 6.

2. Training Data
For acoustic model training we used the following data sources:

• 237 hours of Quaero training data from 2010 to 2012.

• 157 hours of data downloaded from the TED talks web-
site, including the subtitles provided by the TED conferences
archive

For the language model and vocabulary selection we used the subti-
tles of the TED talks and text data from various sources (see Table 1)
totalling about 4816 million words.

3. Front-Ends
We trained systems for two different kinds of acoustic front-ends.
One is based on the widely used mel-frequency cepstral coeffi-
cients (MFCC) obtained from a discrete Fourier transform and
the other on the warped minimum variance distortionless response
(MVDR). The second front-end replaces the Fourier transformation
by a warped MVDR spectral envelope [4], which is a time domain
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technique to estimate an all-pole model using a warped short time
frequency axis such as the mel-scale. The use of the MVDR elimi-
nates the overemphasis of harmonic peaks typically seen in medium
and high pitched voiced speech when spectral estimation is based on
linear prediction.

For training, both front-ends provided features every 10 ms.
During decoding this was changed to 8 ms after the first stage. The
altered frame-shift introduces a slight variation in the decoding re-
sults which can be exploited in the ROVER stage of the decoding
process.

For the MVDR front-end we used a model order of 22 with-
out any filter bank since the warped MVDR already provides the
properties of the mel-scale filter bank, namely warping to the mel-
frequency and smoothing. The advantage of this approach over the
use of a higher model order and a linear filter bank for dimension-
ality reduction is an increase in resolution in low frequency regions
which cannot be attained with traditionally used mel-scale filter
banks. Furthermore, with the MVDR we apply an unequal mod-
elling of spectral peaks and valleys that improves noise robustness,
due to the fact that noise is mainly present in low energy regions.

Both front-ends apply vocal tract length normalization (VTLN)
[5]. For MFCC this is done in the linear domain, for MVDR in the
warped frequency domain. The MFCC front-end uses 13 or 20 cep-
stral coefficients, the MVDR front-end uses 15. The mean and vari-
ance of the cepstral coefficients were normalized on a per-utterance
basis. For both front-ends 15 adjacent frames were combined into
one single feature vector. The resulting feature vectors were then re-
duced to 42 dimensions using linear discriminant analysis (LDA).
Through the temporal context present in the stacked super-vectors
the LDA can implicitly perform an approximation of dynamic spec-
tral features. The dimensionality of the final feature vectors was
empirically proven to work well and coincides with the dimension-
ality of a 14 dimensional static feature vector augmented with first
and second order dynamic features.

In recent years neural network based features have been shown
to improve ASR systems [6]. A typical setup involves training a
neural network to recognize phones (or phone-states) from a win-
dow of ordinary (e.g. MFCC) feature vectors. With the help a
hidden bottleneck layer the trained network can be used to project
the input features onto a feature vector with an arbitrarily chosen
dimensionality [7]. The input vector is derived from a 15 frame
context window with each frame containing 20 MFCC or MVDR
coefficients. So far, we used LDA to reduce the dimensionality of
this input vector, which limits the resulting LDA-features to linear
combinations of the input features. A multi layer perceptron (MLP)
with the bottleneck in the 2nd hidden layer can make use of non-
linear information.

For our IWSLT systems we used bottleneck features for both
our MVDR and MFCC front ends.

4. Acoustic Modeling
4.1. Data Preprocessing

For the TED data only subtitles were available so the data had to be
split into sentence-like chunks. Therefore the data was decoded to
discriminate speech and non-speech and a forced alignment given
the subtitles was done where only the relevant speech parts detected
by the decoding were used. All this preprocessing was done at
NAIST.

4.2. AM Training

We used a context dependent quinphone setup with three states
per phoneme, and a left-to-right topology without skip states. All

acoustic models initially used 8,000 distributions and codebooks de-
rived from decision-tree based clustering of the states of all possible
quinphones. The models were trained using incremental splitting
of Gaussians (MAS) training, followed by optimal feature space
training and 2 iterations of Viterbi training. All models use vocal
tract length normalization (VTLN). After training the continuous
density tied state models we further split the state clusters to ar-
rive at 24000 distributions over the 8000 codebooks again based
on a decision-tree. Then we trained these semi-continuous models
with two iterations of Viterbi training. For some systems the semi-
continuous models were worse than the fully-continuous ones, so
for the final decoding we used the ones that achieved lower WER
on the development data.

We used two different phoneme sets. The first one is based on
the CMU dictionary 2 and is the same phoneme set as the one used
in last year’s system. It consists of 45 phonemes and allophones.
The second phoneme set is derived from the BEEP dictionary 3 and
contains 52 phonemes and allophones. For the CMU phoneme set
we generated missing pronunciations with the help of FESTIVAL
[8], while for the beep dictionary we used Sequitur [9] for this.
Both grapheme to phoneme converters were trained on subsets of
the respective dictionaries.

In total we trained 9 different acoustic models, combining dif-
ferent front-ends and different phoneme sets, which were combined
for decoding as described in 6. We found that not all possible com-
binations need to be trained. The improvements of adding models
with new combinations of techniques already used in other systems
in different combinations is very small especially when the number
of single systems is large.

5. Language Modeling
A 4gram case sensitive language model with modified Kneser-Ney
smoothing was built for each of the text sources listed in Table 1.
This was done using the SRI Language Modelling Toolkit [10].
Only half the transcripts of the IWSLT develpoment data were used
to build a language model, the other half was used as our tuning set.
The aforementioned language models built from the text sources in
Table 1 were interpolated using interpolation weights estimated on
this tuning set resulting in a 4 GB language model with 56, 300k
2grams, 330, 488 3grams and 909, 927k 4grams. The NAIST lan-
guage model [3] used in KIT-NAIST primary was built with the
same sources and tools but applied more thorough data selection
strategies for the LDC Gigaword texts.

5.1. Vocabulary Selection

To select the vocabulary the development data text was randomly
split in half. For each of our text sources, except the Gigaword
and Google Books ngrams (see Table 1) we built a Witten-Bell
smoothed unigram language model using the union of the text
sources’ vocabulary as the language models’ vocabulary (global vo-
cabulary). With the help of the maximum likelihood count estima-
tion method described in [11] we found the best mixture weights
for representing the tuning set’s vocabulary as a weighted mixture
of the sources’ word counts thereby giving us a ranking of all the
words in global vocabulary by their relevance to the tuning set. The
top 130k words were selected as our vocabulary. Unknown pro-
nunciations were automatically generated using the aforementioned
grapheme to phones conversion.

2http://www.speech.cs.cmu.edu/cgi-bin/cmudict
3ftp://svr-ftp.eng.cam.ac.uk/pub/comp.speech/dictionaries/beep.tar.gz
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6. Decoding Strategy and Results
The decoding was performed with the Janus Recognition Tool-
kit (JRTk) developed at Karlsruhe Institute of Technology and
Carnegie Mellon University [12]. Our decoding strategy is based on
the principle of system combination and cross-system adaptation.
System combination works on the principle that different systems
commit different errors that cancel each other out. Cross-system
adaptation profits from the fact that the unsupervised acoustic model
adaptation works better when performed on output that was created
with a different system that works approximately equally well [13].
The final step in our system decoding set-up is the ROVER combi-
nation of several outputs [14].

We trained 9 different acoustic models as described in section
4 and a language model as described in section 5. An additional
acoustic model and an additional language model was trained at
NAIST. For the IWLST ASR track 3 different submissions were
done, which are described in the following.

6.1. KIT Primary Submission

The decoding strategy of the KIT primary submission is described
in Figure 1. The set-up used for our evaluation system consists
of two stages. In each stage multiple systems are run, and their
output is combined with the help of confusion network combination
(CNC) [15]. On this output the acoustic models of the next stage are
then adapted using Vocal Tract Length Normalization (VTLN) [5],
Maximum Likelihood Linear Regression (MLLR) [16], and feature
space constrained MLLR (fMLLR) [17]. Finally the ten second pass
decodings and the CNC outputs of the first pass results as well as the
CNC outputs over the second pass decodings are combined using
ROVER.

Figure 1: Decoding Strategy of the
KIT Primary Submission

6.2. KIT-NAIST Primary and Contrastive Submission

Further to the KIT primary submission we submitted the outputs
of two more systems in the IWLST ASR track namely the KIT-
NAIST primary and contrastive submissions. Figure 2 shows the
principal decoding strategies for all submissions done. The three
submissions are depicted as the two rightmost rectangles and the
central rectangle.

The KIT-NAIST contrastive submission differs from the KIT

System WER

KIT 2011 17.4%
KIT 2012 12.0%

Table 2: WER on tst2011 with KIT’s system for the evaluation cam-
paign of 2011 compared to the system for the campaign of 2012.

primary submission in the fact that a different language model and
pronunciation dictionary was used for the decoding which were
trained in cooperation with NAIST.

The KIT-NAIST primary submission then is a combination of
the KIT primary and the KIT-NAIST contrastive submissions. We
combined a subset of outputs of the second passes and CNCs done
for both the KIT primary submission and for the KIT-NAIST con-
trastive submission. In order to let the ROVER combine the most
diverse outputs we selected ten second pass systems using the most
diverse techniques plus two CNCs. That is the five most diverse of
the ten KIT systems and the five most diverse of the ten KIT-NAIST
systems respectively, together with the CNC of the KIT-NAIST first
pass outputs and the CNC of the KIT second pass outputs. The final
system output for the KIT-NAIST primary submission is depicted
in Figure 2 by the central rectangle.

CNC

KIT 
primary submission

(ROVER of CNCs and 
2nd pass systems)

CNC

10 x 1st 
pass system

10 x 2nd 
pass system

CNC

KIT-NAIST 
contrastive submission 
(ROVER of CNCs and 

2nd pass systems)

CNC
10 x 1st 

pass system
10 x 2nd 

pass system

KIT-NAIST primary submission
(ROVER of 10 best 

2nd pass systems + 2 CNCs)

select 5 most diverse systems

KIT-NAIST Systems (KIT-AM & NAIST-LM)

KIT Systems (KIT-AM & KIT-LM)

select 5 most diverse systems

Figure 2: Decoding Strategy of the KIT Primary,
KIT-NAIST Primary and Contrastive Submissions

6.3. Results

We evaluated our systems on the IWSLT test sets from 2010
(tst2010), 2011 (tst2011) and 2012 (tst2012). We used the tst2010
set as development set and for parameter optimization. Sets tst2011
and tst2012 were used for this years evaluation campaign, set
tst2011 also for last years campaign.

Since the tst2011 set was used for this years and last years eval-
uation campaign we can indicate our progress over the last year.
The compared results are shown in Table 2.

Table 3 shows the results of the KIT primary decoding strategy
and its intermediate steps on the development set tst2010.

Table 4 shows the results of all our submissions on all described
test sets.

7. Conclusion
In this paper we presented our English LVCSR systems, with which
we participated in the 2012 IWSLT evaluation.

　　　　　　　　　　　　   89 
 
The 9th International Workshop on Spoken Language Translation 
　　　　　  Hong Kong, December 6th-7th, 2012 



System WER

Single best 1st pass system 17.8%
CNC 1st pass 16.6%

Single best 2nd pass system 15.3%
CNC 2nd pass 14.7%

ROVER 14.3%

Table 3: WER of the decoding strategy for the KIT primary submis-
sion and its intermediate steps on the development set.

KIT KIT-NAIST KIT-NAIST
primary primary contrastive

tst2010 14.3% 14.0% 14.4%
tst2011 12.0% 12.0% 12.3%
tst2012 12.7% 12.4% 12.6%

Table 4: WER for our three submissions for the three different test
sets.
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[13] S. Stüker, C. Fügen, S. Burger, and M. Wölfel, “Cross-system
adaptation and combination for continuous speech recogni-
tion: The influence of phoneme set and acoustic front-end,”
in Proceedings of the 9th International Conference on Spoken
Language Processing (Interspeech 2006, ICSLP). Pittsburgh,
PA, USA: ISCA, September 2006, pp. 521–524.

[14] J. Fiscus, “A post-processing system to yield reduced word er-
ror rates: Recognizer output voting error reduction (rover),” in
Proceedings the IEEE Workshop on Automatic Speech Recog-
nition and Understanding. Santa Barbara, CA, USA: IEEE,
December 1997, pp. 347–354.

[15] L. Mangu, E. Brill, and A. Stolcke, “Finding consensus in
speech recognition: Word error minimization and other appli-
cations of confusion networks,” Computer Speech and Lan-
guage, vol. 14, no. 4, pp. 373–400, October 2000.

[16] C. Leggetter and P. Woodland, “Maximum likelihood linear
regression for speaker adaptation of continuous density hidden
markov models,” Computer Speech and Language, vol. 9, pp.
171–185, 1995.

[17] V. Digalakis, D. Rtischev, and L. Neumeyer, “Speaker adap-
tation using constrained estimation of gaussian mixtures,”
Speech and Audio Processing, IEEE Transactions on, vol. 3,
no. 5, pp. 357–366, 1995.

　　　　　　　　　　　　   90 
 
The 9th International Workshop on Spoken Language Translation 
　　　　　  Hong Kong, December 6th-7th, 2012 




