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Abstract-In this paper, we address an improved method 
of noise reduction used in multichannel Non-Audible Murmur 

(NAM) based on blind source separation. Recently, speech 
processing with NAM has been proposed for applying versatile 
speech interface into quiet environments where we hesitate to 
utter. NAM is a very soft whispered voice signal detected with 
the NAM microphone, which is one of the body-conductive 
microphone. The detected NAM signal always suffers from 
nonstationary noise caused by speaker's movement because it 
changes the setting condition of the NAM microphone. In order 
to reduce the noise signal, blind noise reduction using stereo NAM 
signals detected with two NAM microphones has been proposed 
by some of the authors. In this paper, we aim to achieve further 
improvement in the noise reduction ability by changing the noise 
estimation and postprocessing algorithms to enhance the target 
NAM signal. In addition, we evaluate the application of recording 
the NAM signals with various types of microphones. 

Index Terms-Non-Audible Murmur, blind spatial subtraction 
array, nonstationary noise 

I. INT RODUCTION 

An explosive spread of portable devices with a lot of 
functions makes us realize importance of the development of 
natural interfaces to use them. A speech interface is one of 
the typical natural interfaces and speech recognition is a key 
technology to develop it. Although speech is a convenient 
medium, there are actually some situations where we face 
difficulties in using speech. For example, we would have 
trouble privately talking in a crowd; speaking itself would 
sometimes annoy others in quiet environments such as in a 
library. The development of technologies to overcome these 
inherent problems of speech is essential. 

Recently, silent speech interfaces [1] have attracted attention 
as a technology to make speech interfaces more convenient. 
They enable speech input to take place without the necessity 
of emitting an audible acoustic signal. As one of the sensing 
devices to detect silent speech signals, Nakajima et al. [2] 

developed a Non-Audible Murmur (NAM) microphone. NAM 
is an extremely soft whispered voice, which is so quiet that 
people around the speaker hardly hear its emitted sound. 
Placed on the neck below the ear, the NAM microphone is 
capable of detecting extremely soft speech such as NAM from 
the skin through only the soft tissues of the head. There have 
been several attempts to develop a NAM recognition system 
by modeling acoustic characteristics of NAM [3], [4], [5], [6], 

which are very different from those of normal speech. In the 
past studies on NAM recognition, the speakers tried main­
taining their positions as stably as possible during speaking to 
keep a setting condition of the NAM microphone as constantly 
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as possible. However, this constraint should not be enforced 
in a real situation; the speaker often moves in speaking. Since 
the detected signal with NAM microphone is sensitive to the 
setting condition of the NAM microphone such as the pressure 
to attach the NAM microphone, noise is easily generated when 
the speaker moves. For example, when the speaker moves 
his/her head to look away, noticeable noise is generated if the 
attachment plane of the NAM microphone is rubbed by the 
skin. The NAM signal easily suffers from the generated noise 
and NAM recognition performance is significantly degraded. 
Since the generated noise is non-stationary and its frequency 
components widely overlap those of the NAM signal, it is 
not straightforward to suppress it. In order to resolve this 
problem, a blind noise suppression method using stereo signal 
processing has been proposed [7]. 

In this paper, we propose to apply blind spatial subtraction 
array (BSSA) to six-channel signals recorded simultaneously 
by a throat microphone and an adheresive NAM microphone, 
in addition to NAM microphone. In this part, we apply sparse 
signal extraction (SSE) to the noise estimation part, which is 
based on the sparseness between speech and diffuse noise, and 
we compare this method with the conventional method [7] in 
noise supression performance. Also, we introduce generalized 
spectral subtraction (GSS) and quasi-parametric Wiener filter 
(QPWF), comparing these two methods in noise supression 
performance. 

II. RELATED WORKS 

A. NAM 

NAM is defined as the articulated production of respiratory 
sounds without using the vocal-fold vibration, which can be 
conducted through only the soft tissues of the head without 
any obstruction such as bones [2]. NAM is recorded using the 
NAM microphone attached to the skin surface behind the ear, 
as shown in Figure 1. In this study, a neckband-type of NAM 
microphone [3], in which the necked presses the microphone 
against the skin, is used to stably attach it. Since NAM is 
a particularly soft whispered voice, the recorded sound by 
the NAM microphone is amplified with a special amplifier. 
Figure 2 shows an example of the spectrogram of NAM. High­
frequency components of NAM are usually not well observed 
owing to the mechanisms of body conduction, such as lack 
of radiation characteristics from lips and effect of low-pass 
characteristics of the soft tissues. 
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Fig. 1. Setting position and structure of NAM microphone. 
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Fig. 2. Example of spectrogram of clean NAM signal. 
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Fig. 3. Example of spectrogram of NAM signal when speaker moves during 
speaking. 

B. Effect of Speaker's Movements on NAM Signal 

In the past studies on NAM recognition ([2], [3], [8]), the 
speakers tried maintaining their positions as stably as possible 
during speaking to keep a setting condition of the NAM 
microphone as constantly as possible. However, this constraint 
should not be enforced in a real situation; the speaker often 
moves freely in speaking. The skin surface and muscles around 
the place of the NAM microphone attached usually move 
in conjunction with the speaker's movements, such as the 
movements of his/her head. These movements often change 
the acoustic condition of the NAM microphone. Figure 3 
shows an example of spectrogram of NAM when the speaker 
lightly shakes his head. We can confirm that the recorded 
NAM signal is severely deteriorated by noise caused by the 
speaker's movements. The generated noise is non-stationary 
and causes substantially large acoustic fluctuation compared 
with the NAM signal shown in Figure 2. This noise causes 
significant degradation in NAM recognition [7]. 

Fig. 4. Throat microphone. 

Fig. 5. Adhesive NAM microphone. 

III. VARIATION OF MICROPHONES 

In the past studies, NAM was recorded only by the NAM 
microphone, which is specialized for recording NAM. How­
ever, in order to make practical, it is worthwhile to test record­
ing NAM by not only the conventional NAM microphone but 
also various kinds of other microphones. In this paper, we use 
the throat microphone and the adhesive NAM microphone, in 
addition to the conventional NAM microphone (hereafter "con­
ventional NAM microphone" or simple "NAM microphone" 
is referred to as the neckband type microphone shown in Sect. 
II-A). The throat microphone used in our experiments consists 
of piezoelectric ceramics, shown in Figure 4. It is attached 
on talker's neck close to the vocal folds and receives uttered 
speech through the skin. It is a commercially available product 
for recording normal speech, not for NAM, and consequently 
it is necessary to investigate whether we can improve the 
recorded sound quality by using the microphone or not. The 
adhesive NAM microphone shown in Figure 5 can receive 
uttered speech conducted through the soft tissues of body, 
similar to the conventional NAM microphone. Its surface is 
covered with adhesive material, fixing by sticking to body. By 
using this microphone, we can attach to the skin surface not 
only behind the ear but also to everywhere in body, and this 
makes it possible to record NAM without restricting attached 
places. 
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IV. BLIND NOISE SUPPRESSION WITH STEREO NAM 
SIGNALS 

A. Overview 

The conventional method [7] and proposed method use 
the NAM signals recorded via stereo channels of the NAM 
microphone, these of the throat microphone, and these of 
the adhesive microphone. Such stereo signals allow us to 
use various effective noise suppression techniques such as 
beamforming. First, we represent the sound mixing model in 
the stereo signals detected with those microphones. Then, the 
difference of blind noise suppression method between the con­
ventional and proposed methods are described. These methods 
are based on BSSA, which consists of a noise estimation 
part and a noise suppression part. The block diagram of the 
conventional method is shown in Figure 6. We apply ICA 
based on infomax to the noise estimation part, and GSS to 
the noise suppression part. The block diagram of the proposed 
method is shown in Figure 7, where we apply SSE to the noise 
estimation part, and QPWF to the noise suppression part. 

B. Mixing Model of NAM and Noise 

The detected stereo NAM signals with speaker's move­
ments, X(f,T) = [XI(f,T),x2(f,T)]T consisting of the first 
channel signal Xl (f, T) and the second channel signal X2 (f, T), 

are modeled by 

X(f,T) c::: a(f)81(f,T)+n(f,T), (1) 

where T denotes transposition of the vector, f is the frequency 
bin, and T is the time index of DFT analysis. A component 
of the NAM signal before the body conduction is given by 
81 (f, T), which is unobserved. The signal 81 (f, T) is linearly 
filtered with channel-dependent and time-invariant transfer 
functions a(f) = [a1(f),a2(f)]T, which are affected by vari­
ous factors such as a setting position of the NAM microphone, 
a setting of the amplifier, and so on. The detected stereo noise 
signals are modeled by n(f,T) = [nl(f,T),n2(f,T)]T as 
diffuse noise signals. Note that to simplify the mixing process 
we also assume that the speaker's movements do not change 
the transfer function a(f). 
C. Noise Estimation Based on Infomax 

In this subsection, the conventional noise estimation 
method, which uses frequency domain ICA (FD-ICA) [9] 

based on higher-order statistics, is described. The detected 
stereo mixed-signals are separated with the complex val­
ued demixing matrix W ICA (f) so that the output signals 
o(f, T) = [01 (f, T), 02(f, T)]T become mutually independent. 
The output signals are given by 

o(f, T) WrCA(f)X(f, T), (2) 

where the demixing matrix W rCA (f) is determined by mini­
mizing Kullback-Leibler divergence between the joint proba­
bility density function p( o(f, T)) and the marginal probability 
density function P(01(f,T))p(02(f,T)) over a time sequence. 
The optimal WrcA (f) is obtained using the following iterative 
equation: 

wit;] = wi�A (f) 
+0; [1 - ((1) (o(f, T))OH (f, T))T ] WI�A (f), (3) 

where 0; is the step-size parameter, [i] indicates the value of the 
i-th step in iterations, 1 is the identity matrix, OT denotes the 
time-averaging operator, H denotes Hermitian transposition, 
and (1) ( -) is the nonlinear vector function [10]. In this paper, 
we determine the demixing matrix utterance by utterance. 

In the mixed signal modeled by (1), the separation process 
given by (2) is not obviously capable of suppressing the noise 
signal n(f, T). On the other hand, it is capable of suppressing 
a component of the NAM signal 81 (f, T). In other words, ICA 
is proficient in well estimating a component related to the noise 
signal [11]. Therefore, only the noise component is useful in 
the output signals. To remove the NAM signal from the output 
signals, the following "noise-only" signal vector o(n) (f, T) is 
constructed: 

(4) 

To solve permutation problem, an initial matrix of WrcA 
is designed so that 02(f, T) becomes the noise component 
[10]. Following this, the projection back (PB) process [12] 

[l3] is performed to remove the ambiguity of amplitude and 
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estimate the non-stationary stereo noise signal n(f, T) = 

[fh(f, T) , fb(f, T) ]T as follows: 

n(f,T) wtCA(f) O(n)(f,T) , (5) 

where M+ denotes the Moore-Penrose pseudo inverse matrix 
of M. It is obvious that this noise estimation is not perfect. 
But it is still useful to enhance the NAM signal with nonlinear 
noise reduction process using the noise spectral amplitude, as 
described later in Sect. IV-E. 

D. Noise Estimation Based on SSE 

In this subsection, the proposed noise estimation method 
is described. In noise estimation based on infomax described 
in Sect. IV-C, it is necessary to solve permutation problem. 
Thus we should discriminate which of 01 (f, T) and 02 (f, T) 
is speech or noise, but this is very difficult to solve because 
the conventional solution [14] is mainly based on direction­
of-arrival (DOA) information, which is ambiguous in NAM. 
In addition, there is a problem that the nonlinear vector 
function such as tanh(x) is inappropriate for approximation 
of probability density of noise. To avoid these problems, SSE 
that exploits the sparsity of the modulus of the target speech 
signal is beneficial. In this method, it is not necessary to 
solve the permutation problem because we introduce statistical 
difference between speech and diffuse background noise. In 
addition, since there is no local minimum of the cost function, 
the convergence is stable. This results in higher quality of noise 
estimation than that of based on infomax. 

In the fth frequency bin, we estimate y(f, T) by applying 
extracting vector w(f) to the observed signals 

noise components [15] [16], and consequently the proposed 
cost function is minimized when the target speech (not noise) 
component is extracted. For this reason, there is no need to 
check for the erroneous selection of a noise component (the 
equivarent of the permutation problem). The extraction vector 
w(f) is updated with the steepest descent algorithm. The 
update rule for w(f) is 

[k+1l(f) - [kl(f) [kl f}J(w(f) ) 
I (10) w - w - fJ f}w(f) W(f)=Wlk](f), 

where w k (f) and fJ are the extraction vector and the adaptation 
step at the kth iteration. The gradient of the cost function is 
given by 

f}J(w(f) ) { y(f, T) H } 
f}w(f) = 2E x(f, t) Iy(f, T) I (E{ly(f, T)I} - 1)· (11) 

The noise estimate is obtained by subtracting orthogonal pro­
jection of the extracted component y(f, T) from the observed 
signals. Assuming perfect extraction of the target speech, we 
obtain w(f) A(f) = Ael, where el is the first coodinate 
vector, and constraint (7) forces IAI2E{lsll}2 = 1. Then the 
projection back of y(f, T) yields the N-dimensional signal 

s(f, T) = E{x(f, T) }y(f, T) = A(f) (1,:)SI(f, T) , (12) 

where A(f) (1,:) is a component of the first line of A(f) , and 
N is the number of assumed signals. Then, the component of 
noise estimate is obtained by taking 

N 

n(f,T) = X(f,T) - S(f,T) = LA(f) (j,:)Sj(f,T) . (13) 

j=2 

y(f, T) = w(f) x(f, T) = w(f) A(f) s(f, T) (6) E. Noise Suppression Part 

with constraint 
E{ly(f, TW} = 1, (7) 

where A(f) is a matrix whose entries represent the transfer 
functions, and s(f, T) is components of uttered signals. The 
first component of s(f, T) ,  SI (f, T) is the target speech com­
ponent. The vector w(f) is updated so as to minimize the cost 
function 

J(w(f) ) = (E{ly(f, T)I} - 1)2, (8) 

where 1 � 0 is a parameter for controlling the sparsity of 
the extracted component. The constraint (7) can be written as 
(dropping frame and frequency indexes) var{lyl} +E{lyl}2 = 

1. Thus minimizing the cost function aims at extracting the 
component such that 

E{lyl} = 1 and var{lyl} = 1 - 12. (9) 

For a small 1, the extracted component has a modulus with a 
small mean E{lyl} and a large variance var{lyl} with respect 
to constraint imposed by (7). Namely, the modulus of the 
extracted component is sparse in the sense that most of the 
values are close to zero and only a few are significantly large. 
In the case of target speech in diffuse background noise, the 
speech modulus is sparser than that of the diffuse background 

In the noise suppression part, GSS or QPWF is applied 
to each channel of the mixed signal. The GSS-applied NAM 
signal s[GSSl (f, T) = [s�GSSl (f, T) , s�GSSl (f, T) ]T is obtained 
by 

s�Gssl(f, T) = (if IXc(f, TW� > ,Blnc(f, TW�) , (14) 
{Vlxc(f, T)I2� - ,BInc(f, T) 12�ej arg(xc(j,r)) 

'T}' xc(f,T) (otherwise), 
where c is the channel index, ,B is the processing strength pa­
rameter, 'T} is the flooring parameter, and � is the exponent pa­
rameter. Also, the QPWF-applied NAM signal s[QPWFl (f, T) 
is obtaind by 

s[QPWFl c IXc(f, T) 12� + ,Blnc(f, T) 12� 
·Ixc(f, T) lej arg(xc(j,r))

. 

V. EXPERIMENTAL EVALUATIONS 

A. Experimental Conditions 

(15) 

Target signals are six-channel NAM signals uttered by a 
Japanese female speaker. The target speech utterance was 
selected from Japanese Newspaper Corpus [17], where the 
length of the utterance is about 10 s. These NAM data were 
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TABLE I 
EXPERIMENTAL CONDITIONS 

ICA method lnfomax, SSE 
NRR [dB] 3, 6, 9 

Value of exponent 1.0, 0.7, 0.4, 0.1 
Objective evaluation mesaure Cepstral distortion (CD) 

05'10 
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c: 8 0 
t 

6 0 -
en 
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(ij '-- 2 en 
a. 
Q) 0 () 

.lnfomax o SSE 

3 6 9  
Noise reduction rate [dB] 

Fig. 8. Results of cepstral distortion for info max and SSE methods with 
equivalent NRR. 

recorded with two-channel NAM microphones, two-channel 
throat microphones, and two-channel adhesive NAM micro­
phones simultaneously. The throat microphone is attached on 
speaker's neck close to the vocal cords, the NAM microphone 
is attached on the neck below the ear, and the adhesive NAM 
microphone is attached on the speaker's clavicle. The sampling 
frequency was set to 16 kHz. We used simulated mixed-signals 

generated by superimposing the non-stationary noise signals, 
recorded when the speaker moved without speaking in NAM, 
on the NAM signals recorded when the speaker did not move, 
with O-dB SNR. In addition, we apply BSSA to the signals 
from the same kinds of microphone pairs. Then, we adjusted 
the processing strength parameter of GSS and QPWF so that 
noise reduction rate (NRR) [10] of each speech-enhanced 
output is identical. The NRR is defined as 

NRR = 10l0g E[s�utl/E[n�utl 
10 E[Sfnl/E[nfnl (16) 

where Sin and Sout are the input and output speech signals, 
respectively, and nin and nout are the input and output noise 
signals, respectively. Initial adaptation step of SSE was set to 
0.001. The fast Fouriere transform (FFT) size was 1024, and 
the frame shift length was 256. The rest of the experimental 
conditions is listed in Table I. 

B. Comparison of ICA Method 

We compare noise estimation based on infomax and SSE. 
We apply these methods to the noise estimation part of BSSA, 
and calculate CD when NRR is 3 dB, 6 dB, and 9 dB. The 
result of the experiment is shown in Figure 8. In the small 
NRR case, we cannot see the difference between two methods. 
However, in large NRR cases, infomax's CD becomes more 
larger than that of SSE. Thus, SSE is superior to infomax. This 
result is well consistent with the theoretical behavior of SSE 
as described in Sect. IV-D; thus SSE can automatically solve 
the permutation even when the noise DOA is ambiguous. 

Value of exponent in GSS: 
.1.0 []0.7 �0.4 00.1 

05' 10 r-----------..., 
:£ 
§ 8 
t 
o 6 
(j) 
'6 4 
(ij '-
(j) 2 
a. 

c3 0 
3 6 9  

Noise reduction rate [dB] 

Fig. 9. Results of cepstral distortion with equivalent NRR when changing 
exponent parameter of GSS. 

Value of exponent in QPWF: 
.1.0 []0.7 �0.4 00.1 

05' 10 .-------------..., 
:£ 
§ 8 
t 
.8 6 
en 
'6 4 
� 
(j) 2 
a. 
Q) () 0 

3 6 9 
Noise reduction rate [dB] 

Fig. 10. Results of cepstral distortion with equivalent NRR when changing 
exponent parameter of QPWF. 

C. Comparison of Postprocessing Method 

In order to compare QPWF with GSS in postprocessing, 
the results of CD are shown in Figure 9 and Figure 10 with 
the internal parameter set like Table I. When we apply GSS 
to the noise suppression part, the smaller exponent parameter 
yields smaller CD. Thus, the small exponent parameter in GSS 
gives better performance for noise reduction. On the other 
hand, when we apply QPWF to the noise suppression part, we 
cannot confirm an apparent tendency in terms of the exponent 
parameter. In conclusion, GSS with � of 0.1 results in the best 
noise reduction performance. 

D. Comparison between Microphone 

Figure 11 shows the result of applying blind noise sup­
pression to the NAM signal from various microphones. We 
use SSE in the noise estimation part and GSS in the noise 
reduction part with the exponent parameter of 0.1. From the 
result, the adhesive NAM microphone is better to use for 
improving noise reduction performance. Thus, we confirm 
the promising possibility that we can perform high quality 
noise suppression to NAM signal recorded not only by the 
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Fig. II. Results of cepstral distortion for various microphones with equivalent 
NRR. 

conventional NAM microphone, but also by the adhesive NAM 
microphone. 

V I. CONCLUSION 

In this study, we proposed the blind noise suppression 
method for NAM to alleviate the sound quality degradation 
caused by non-stationary noise generated by speaker's move­
ments during speaking. We applied BSSA to the NAM signal 
from the stereo throat microphone and the stereo adhesive 
NAM microphone in addition to the stereo NAM microphone, 
and compared noise suppression performance of various meth­
ods. First, in the noise estimation part, we compared SSE to the 
conventional infomax method, and showed that SSE is superior 
to the conventional method. Secondly, in the noise reduction 
part, we applied QPWF and GSS to BSSA. When we used 
GSS, the setting if exponent parameter is an important issue in 
noise suppression and the small exponent parameter gives high 
quality noise suppression. On the other hand, when we used 
QPWF, the exponent parameter is not so sensitive to the perfor­
mance. Finally, we compared noise suppression quality of the 
conventional NAM microphone, the throat microphone, and 
the adhesive NAM microphone. In conclusion, the adhesive 
NAM microphone performed best quality in noise suppression. 
Thus, it was shown that the investigation on how to record the 
NAM signals by various microphones and searching the best 
attached place are profitable. 
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