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Abstract
This paper presents an implementation of real-time processing
of statistical voice conversion (VC) based on Gaussian mix-
ture models (GMMs). To develop VC applications for enhanc-
ing our human-to-human speech communication, it is essen-
tial to implement real-time conversion processing. Moreover,
it is useful to reduce computational complexity of the conver-
sion processing for making VC applications available even in
limited resources. In this paper, we propose a real-time VC
method based on a low-delay conversion algorithm consider-
ing dynamic features and a global variance. Moreover, we also
propose a computationally efficient VC method based on rapid
source feature extraction and diagonalization of full covariance
matrices. Some experimental results are presented to show that
the proposed methods work reasonably well.
Index Terms: voice conversion, real-time processing, low-
delay conversion, computational efficiency

1. Introduction
Statistical voice conversion (VC) is an effective technique for
modifying acoustic parameters to convert non-linguistic infor-
mation while keeping linguistic information unchanged. There
are a lot of applications of this technique for enhancing our
human-to-human speech communication beyond various con-
straints causing some barriers; e.g., speaking-aid for handi-
capped people beyond physical constraints [1]. To develop such
VC applications, it is essential to implement real-time conver-
sion processing. A conversion method based on a Gaussian
mixture model (GMM) [2] is a promising technique since it en-
ables frame-by-frame conversion processing and no text tran-
scription is necessary.

As one of the state-of-the-art GMM-based conversion
methods, a trajectory-based conversion method has been pro-
posed [3] but it does not basically run in real time. Towards real-
time VC processing, a low-delay conversion algorithm to ap-
proximate the trajectory-based conversion process with a frame-
by-frame conversion process has been proposed [4] inspired by
a recursive parameter generation algorithm for speech synthesis
based on hidden Markov model [5] and its another application
for speech coding [6]. However, it does not consider a global
variance (GV), which is helpful to significantly improve con-
verted speech quality. Moreover, it will be required to reduce
computational cost in the conversion process as much as possi-
ble to implement VC applications using only limited resources.

This paper presents an implementation method of compu-
tationally efficient real-time VC processing. The GV is im-
plemented as postfiltering process to improve quality of con-
verted speech. Moreover, to reduce computational complexity,
the GMM is modified so as to accept rapidly extracted source
features and approximate likelihood calculation.

2. Low-Delay Voice Conversion Based on
Trajectory Estimation

2.1. Feature Extraction

As the source feature, the D(x)-dimensional spectral segment
feature vectorXt at frame t is extracted from a joint vector de-
veloped by concatenating spectral parameter vectors over sev-
eral frames from t−C to t+C of the source voice as follows:

Xt = E
[
x�

t−C , · · · ,x�
t , · · · ,x�

t+C

]�
+ f , (1)

where � denotes transposition of the vector. There are some
options of a setting of the transformation matrix E and the
bias vector f ; e.g., using regression coefficients to calculate dy-
namic features or using eigenvectors to efficiently model the
joint vector. This setting depends on each of VC applications.

As the target feature, a joint static and dynamic feature vec-
tor Y t =

[
y�
t ,Δy�

t

]� is calculated at each frame, where yt is
aD(y)-dimensional speech parameter vector of the target voice
at frame t and Δyt is its dynamic feature vector, which is cal-
culated as

Δyt = yt − yt−1. (2)

It depends on VC applications which speech parameter is used.

2.2. Training

The joint source and target feature vector
[
X�

t ,Y
�
t

]� is de-
veloped at each frame by performing time alignment between a
time sequence of the source feature vectors and that of the target
feature vectors in a training data set. Then, the joint probability
density function (p.d.f.) of the source and target feature vectors
is modeled with a GMM as follows:

P
(
Xt,Y t|λ(X,Y )

)

=
M∑

m=1

αmN
([

X�
t ,Y

�
t

]�
;μ(X,Y )

m ,Σ(X,Y )
m

)
, (3)

where the Gaussian distribution with a mean vector μ and a co-
variance matrix Σ is denoted as N (·;μ,Σ), the mixture com-
ponent index is m, the total number of mixture components
is M , and λ(X,Y ) denotes a parameter set of the GMM. The
weight of themth mixture component is αm. The mean vector
μ(X,Y )

m and the covariance matrix Σ(X,Y )
m of the mth mixture

component are respectively written as

μ(X,Y )
m =

[
μ(X)

m

μ(Y )
m

]
, Σ(X,Y )

m =

[
Σ

(XX)
m Σ

(XY )
m

Σ
(Y X)
m Σ

(Y Y )
m

]
. (4)
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2.3. Conversion

LetX =
[
X�

1 , · · · ,X�
T

]� and Y =
[
Y �

1 , · · · ,Y �
T

]� be a
time sequence vector of the source feature vectors and that of
the target feature vectors, respectively. A time sequence vector
of the converted static feature vectors ŷ =

[
ŷ�
1 , · · · , ŷ�

T

]� is
determined by maximizing the conditional p.d.f. of Y givenX
[3] as follows:

ŷ = argmax
y

P
(
Y |X,λ(X,Y )

)
subject to Y = Wy, (5)

whereW is the 2D(y)T -by-D(y)T matrix to extend a time se-
quence vector of the static feature vectors into that of the joint
static and dynamic feature vectors [5]. In the low-delay con-
version algorithm [4], the suboptimum mixture component se-
quence m̂ = {m̂1, · · · , m̂T } is determined frame by frame as
follows:

m̂t = argmax
m

P (m|Xt,λ
(X,Y )). (6)

The conditional p.d.f. of Y t given Xt and the mth mixture
component at each frame is modeled by a Gaussian distribution,
where its mean vector and covariance matrix are given by

μ
(Y |X)
m,t = μ(Y )

m +Σ(Y X)
m Σ(XX)

m

−1
(
Xt − μ(X)

m

)
, (7)

Σ(Y |X)
m = Σ(Y Y )

m −Σ(Y X)
m Σ(XX)

m

−1
Σ(XY )

m , (8)

respectively. Using only diagonal components of the covari-
ance matrixΣ(Y |X)

m , each dimensional components of ŷ is sep-
arately determined. A (L + 1)-by-(L + 1) state covariance
matrix P

(0)
d and a (L + 1)-dimensional state vector ŷ(0)

d are
initialized as the zero matrix and the zero vector, respectively.
Then, they are recursively updated frame by frame as follows:

P
′(t−1)
d = JLP

(t−1)
d J�

L + diag
[
01×L,Σ

(y|X)
mt,d

]
, (9)

ŷ
′(t−1)
d = JLŷ

(t−1)
d +

[
01×L, μ

(y|X)
mt,t,d

]�
, (10)

P
(t)
d =

(
I − k

(t)
d wL

)
P

′(t−1)
d , (11)

ŷ
(t)
d = ŷ

′(t−1)
d + k

(t)
d

(
μ
(Δy|X)
mt,t,d

−wLŷ
′(t−1)
d

)
, (12)

where the (L+ 1)-dimensional vector k(t)
d is calculated as

k
(t)
d = P

(t−1)
d w�

t

(
Σ

(Δy|X)
mt,d

+wLP
(t−1)
d w�

L

)−1

,(13)

and the (L + 1)-dimensional row vector wL and the (L + 1)-
by-(L+ 1) matrix JL are given by

wL =
[
01×(L−1),−1, 1

]
, JL =

[
0 IL×L

0 01×L

]
, (14)

respectively. The dth dimensional static feature components,
μ
(y|X)
m,t,d and Σ

(y|X)
m,d , of the mean vector μ(Y |X)

m,t and the covari-
ance matrixΣ(Y |X)

m are used to predict the state covariance ma-
trix and the state vector as shown in Eqs. (9) and (10). Their
dynamic feature components, μ(Δy|X)

m,t,d and Σ
(Δy|X)
m,d , are used

to optimize the Kalman gain in Eq. (13) and update the state co-
variance matrix and the state vector as shown in (11) and (12).
The first component of ŷ(t)

d is used as the dth component of the
converted static feature vector at frame t− L, ŷt−L,d.

Note that the length of frame delay is L + C, where C is
the number of succeeding frames in Eq. (1). This recursive
update does not cause significant degradation in quality of the
converted speech even if setting L to a small value, e.g., 3 [4].

3. Implementation of Real-Time Voice
Conversion Processes

3.1. Postfiltering with Global Variance
The global variance (GV) vector v(y) =

[
v
(y)
1 , · · · , v(y)

D(y)

]�
is calculated from a time sequence vector of the target static
feature vectors y utterance by utterance as follows:

v
(y)
d =

1

T

T∑
t=1

(
yt,d − 1

T

T∑
τ=1

yτ,d

)2

, (15)

where yt,d is the dth dimensional component of the target static
feature vector yt at frame t. Muffled sounds in the converted
speech is significantly reduced by determining the converted
static feature vectors using an additional penalty term on the
GV in Eq. (5) so that their GV is close to the GV calculated
from the natural target speech parameters. However, because
this determination process is performed with an iterative batch-
type update using the gradient, it is not suitable for real-time
voice conversion.

As a conversion method considering the GV without the it-
erative update, we propose the postfiltering based on the GV.
As in the conventional method, the mean vector of the GV of
the target speech parameters, μ(v) =

[
μ
(v)
1 , · · · , μ(v)

D(y)

]�
, is

calculated in advance. Additionally, the source feature vec-
tors in training data is converted to the target speech parame-
ters using the trained GMM and the mean vector of their GV,

μ̂(v) =
[
μ̂
(v)
1 , · · · , μ̂(v)

D(y)

]�
, is also calculated in advance.

Moreover, a bias value of the converted speech parameters over
an utterance is calculated utterance by utterance and its mean
value over all utterances, 〈ŷd〉, is also calculated. Using these
statistics, the dth dimensional component of the converted static
feature vector is enhanced frame by frame as follows:

ŷ
(GV)
t,d = μ

(v)
1
2

d μ̂
(v)

− 1
2

d (ŷt,d − 〈ŷd〉) + 〈ŷd〉 . (16)

3.2. Computationally Efficient Conversion Algorithm
3.2.1. Rapid source feature extraction
To extract high-quality speech parameters, the state-of-the-art
analysis methods, such as STRAIGHT analysis [7], are effec-
tive but their computational cost is usually expensive. In speech
parameter extraction of the target voice, these analysis meth-
ods should be used since quality of the target speech parame-
ters directly affects quality of the converted speech. Moreover,
the computationally expensive analysis does not need to be per-
formed in conversion. On the other hand, in speech parameter
extraction of the source voice, its computational cost directly
affects the conversion time.

To significantly reduce the computational cost while keep-
ing the converted voice quality high, we propose the use of a
lower-quality speech parameter extracted with simple FFT anal-
ysis as the source feature and the conversion from such a lower-
quality speech parameter of the source voice into the high-
quality speech parameter of the target voice using the GMM
trained with the joint feature vectors based on those source and
target speech parameters.

3.2.2. Diagonalization of covariance matrices
In some VC applications, such as alaryngeal speech enhance-
ment [1] or body-conducted speech enhancement [8], the use
of full covariance matrices is essential since different types of
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speech parameters are used for the source and target features. It
makes the mixture component selection in Eq. (6) more compu-
tationally expensive. To significantly reduce its computational
cost while keeping accuracy in the mixture component selec-
tion high enough, a diagonalization method of the covariance
matrices is proposed inspired by the semi-tied covariance [9].

In this paper, we implement constrained maximum likeli-
hood linear regression (CMLLR) [10] for the diagonalization.
The joint p.d.f. is written as

P
(
Xt,Y t|λ(X,Y ),A, b

)
=

M∑
m=1

αmN
(
Xt; μ̂

(X)
m , Σ̂

(XX)

m

)
N
(
Y t;μ

(Y |X)
m,t ,Σ(Y |X)

m

)
, (17)

where the mean vectors and the covariance matrices of only the
p.d.f. of the source feature vector are approximately modeled as

μ̂(X)
m =A−1μ(X′)

m −A−1b, Σ̂
(XX)

m =A−1Λ(X′X′)
m A−�, (18)

respectively. The original mixture-dependent full covariance
matrix Σ̂

(XX)

m is represented with the mixture-dependent di-
agonal covariance matrix Λ(X′X′)

m and the global full transfor-
mation matrix A. Both the global CMLLR transform {A, b}
and the mixture-dependent parameters

{
Λ

(X′X′)
m ,μ(X′)

m

}
are

optimized in the sense of maximum likelihood with the training
data set in the same manner as adaptive training.

In conversion, the global transform is applied to not the
model parameters but the source feature vector as follows:

X ′
t = AXt + b. (19)

If the transformation matrix for the feature extraction in Eq. (1)
is also full, the global CMLLR transform is applied to them in
advance as follows:

E′ = AE, f ′ = Af + b, (20)

and therefore, the computational cost in the conversion does not
increase. Using the transformed source feature vector X ′

t, the
mixture component selection process in Eq. (6) is written as

m̂t = argmax
m

αm

√
|A|2N

(
X ′

t; μ̂
(X′)
m , Λ̂

(X′X′)
m

)
. (21)

Thanks to the diagonal covariance matrix Λ̂
(X′X′)
m , the compu-

tational cost significantly decreases compared with the use of
the full covariance matrixΣ(XX)

m .
3.3. Implementation of conversion process
Figure 1 shows an example of a real-time VC process by set-
ting analysis window length to 25 ms, frame shift to 5 ms,
the parameter C in the source feature extraction to 2, the pa-
rameter L in the low-delay conversion to 2, and the minimum
value of converted F0 to 70 Hz. In the feature extraction, 25
ms delay (half window length 15 ms and two preceding frames
10 ms) is needed to extract the source feature vector at frame
t. In the low-delay conversion, the converted speech param-
eters at frame t − 2 is determined, and therefore, 10 ms de-
lay for two frames is needed. In waveform synthesis, a one-
pitch mixed excitation signal is generated using a converted F0

value and converted aperiodic components capturing frequency-
dependent noise strength if a synthesized pitch mark stands at
frame t − 2, and then overlap-add is performed. Due to anti-
causality of the excitation signal, the one pitch excitation signal

generated at frame t − 2 possibly affects the excitation signal
at three preceding frames (15 ms) if the minimum F0 value is
set to 70 Hz (14.3 ms). Finally, the generated excitation sig-
nal at frame t − 5, which is no longer affected by the next
one-pitch mixed excitation signal, is filtered with the converted
spectral parameter at the corresponding frame to generate a con-
verted waveform signal. These processes are performed frame
by frame. Totally 50 ms maximum delay exists in this example.

The maximum delay changes depending on the VC applica-
tion. In the conversion from body-conducted unvoiced speech
to a whispered voice [8], 15 ms delay in waveform synthesis
is no longer necessary since white noise is used as the excita-
tion signal. Even in the most complicated conversion, such as
alaryngeal speech or body-conducted unvoiced speech to a nat-
ural voice [1, 8], the maximum delay caused by a typical setting
(C = 4, L = 3) is 65 ms. We have confirmed that this conver-
sion process in 16 kHz sampling runs in real time on a laptop
PC (Intel Core 2 Duo P8400, 2.26 GHz).

4. Experimental Evaluations
We conducted experimental evaluations to demonstrate the ef-
fectiveness of the proposed GV-based postfiltering and diago-
nalization methods in the VC application of body-conducted
speech enhancement [8].

4.1. Experimental Conditions

We simultaneously recorded body-conducted natural voices and
natural voices uttered by four Japanese speakers (two males and
two females) using non-audible murmur microphone and head-
set microphone. Each speaker uttered about 50 phoneme bal-
anced sentences for training and about 105 newspaper article
sentences for evaluation. The sampling frequency was 8 kHz.

The 0th through 16th mel-cepstral coefficients were used as
a spectral feature. PCA from 9 frames around a current frame
(C = 4) was used to extract 34-dimensional segment feature
at each frame. The conversion from the segment feature of the
body-conducted natural voice into the mel-cepstrum of the nat-
ural voice was performed. In synthesis, STRAIGHT mixed ex-
citation and MLSA filter were used.

In the evaluation of the GV-based postfilter, an opinion
test on speech quality was conducted. Six listeners evaluated
quality of the converted speech by the low-delay conversion
with/without the GV postfilter and the conventional batch-type
conversion considering the GV. STRAIGHT analysis [7] was
used in both source and target feature extraction. The number
of mixture components was set to 64.

Moreover, the computationally efficient conversion meth-
ods were evaluated with mel-cepstral distortion used as an eval-
uation metric. Simple FFT analysis was used in the compu-
tationally efficient source feature extraction. To clarify the ef-
fect of the proposed diagonalization, we compared the follow-
ing conditions; the use of full covariance matrices of 64 mix-
ture components (Full), the use of only diagonal components of
those matrices (Only diag), the use of diagonal components but
the number of mixture components increased up to 250 (Diag),
and the use of the proposed diagonalization of the 64 mixture
components (CMLLR+AT).

4.2. Effect of GV-based postfiltering

Figure 2 shows mean opinion score (MOS) as a result of the
opinion test. Compared with the batch-type conversion con-
sidering the GV (‘Batch-type w/ GV’), the low-delay conver-
sion setting the frame delay to 5 without the GV-based postfil-
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Figure 1: Frame-by-frame processing in real-time voice conversion (C = 2, L = 2).
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Figure 2: Result of opinion test on speech quality.

ter (‘Delay = 5 w/o GV-PF’) causes significant degradation in
the converted speech quality. This degradation is not observed
when using the GV-based postfiltering (‘Delay = 5 w/ GV-PF’).
Moreover, even if setting the frame delay to 1 (‘Delay = 1 w/
GV-PF’), the converted speech quality is still comparable to the
batch-type conversion.

4.3. Effect of Computationally Efficient Conversion

Table 1 shows the mel-cepstral distortion in each conversion
setting. No degradation is observed by using FFT analysis in-
stead of STRAIGHT analysis in the source feature extraction. If
simply using only diagonal components of the full covariance
matrices, significantly large degradation is caused. Its degra-
dation is slightly reduced by increasing the number of mixture
components but conversion accuracy is much worse than that
by the full covariance matrices. We can see that the proposed
diagonalization significantly reduces this degradation. We have
found that the computational time in the proposed method is
almost four times as fast as that in the conventional method.

5. Conclusions
This paper has presented an implementation of computationally
efficient real-time voice conversion processing. Some experi-
mental results have demonstrated that the proposed implemen-
tation yields good performance in both converted speech quality
and computational complexity. We plan to further implement
these techniques for digital signal processor (DSP).

Table 1: Mel-cepstral distortion (MelCD).
Analysis Covariance MelCD [dB]
STRAIGHT Full (64 mix) 3.52
FFT Full (64 mix) 3.52
FFT Only diag (64 mix) 3.97
FFT Diag (250 mix) 3.86
FFT CMLLR+AT (64 mix) 3.59
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