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Abstract
In this paper, we propose parameter generation methods us-
ing rich context models in HMM-based speech synthesis as yet
another hybrid method combining HMM-based speech synthe-
sis and unit selection synthesis. In the traditional HMM-based
speech synthesis, generated speech parameters tend to be ex-
cessively smoothed and they cause muffled sounds in synthetic
speech. To alleviate this problem, several hybrid methods have
been proposed. Although they significantly improve quality of
synthetic speech by directly using natural waveform segments,
they usually lose flexibility in converting synthetic voice char-
acteristics. In the proposed methods, rich context models rep-
resenting individual acoustic parameter segments are reformed
as GMMs and a speech parameter sequence is generated from
them using the parameter generation algorithm based on the
maximum likelihood criterion. Since a basic framework of the
proposed methods is still the same as the traditional framework,
the capability of flexibly modeling acoustic features remains.
We conduct several experimental evaluations of the proposed
methods from various perspectives. The experimental results
demonstrate that the proposed methods yield significant im-
proves in quality of synthetic speech.
Index Terms: HMM-based speech synthesis, over-smoothing,
rich context model, parameter generation

1. Introduction
Many attempts at developing a technique for converting text
into speech, i.e., Text-To-Speech (TTS), have been studied
for several decades. It is no doubtful that the corpus-based
approach [1] has yielded dramatic improvements of TTS. In
the corpus-based approach, there are two main synthesis tech-
niques, i.e., sample-based synthesis and statistical parametric
synthesis. The sample-based synthesis such as unit selection [2]
directly uses acoustic inventories selected from a speech corpus
for synthesizing a speech waveform. One of the main advan-
tages of the unit selection is that high quality speech keeping
original voice characteristics is synthesized by concatenating
natural acoustic segments. However, characteristics of the gen-
erated speech are fully dependent on original voices.

On the other hand, the statistical parametric synthesis meth-
ods, such as HMM-based speech synthesis, use averaged acous-
tic inventories extracted from the speech corpus. In HMM-
based speech synthesis, spectrum, pitch, and duration are mod-
eled simultaneously in a unified framework of HMMs. In
synthesis these parameters are generated from HMMs under
a maximum likelihood (ML) criterion by using dynamic fea-
tures [3]. One of the biggest advantages of this method is

the capability of flexibly controlling voice characteristics, e.g.,
speaker-individuality control [4][5], and speaking-style control
[6]. However, the generated speech parameters tend to be over-
smoothed, and synthetic speech evidently sounds muffled com-
pared with natural speech because detailed characteristics of
speech parameters are often removed in the statistical process.

In order to alleviate this over-smoothing effect, hybrid
methods between those two main methods have been proposed.
Suitable waveform segments are searched out from the speech
corpus to maximize the HMM likelihood [7]. The use of wave-
form segments dramatically improves speech quality. How-
ever, it loses a strong advantage of HMM-based speech syn-
thesis of controlling voice characteristics. As one of the hy-
brid approaches having better flexibility than unit selection, the
use of rich context models to represent each waveform segment
with probability distributions of individual speech component
parameters, such as spectrum andF0, has been proposed [9]. In
synthesis part, the probability distributions of all components
corresponding to one waveform segment are selected in each
HMM-state and speech parameters are generated from them.
This method also yields significant improvements in speech
quality. However, efficient and flexible acoustic modeling in the
original HMM-based speech synthesis is lost since this method
needs to use a strong constraint among different components in
the selection of their probability distributions.

In this paper, we propose parameter generation methods for
another hybrid approach using the rich context models to keep
flexible property in synthesis part. The trained rich context
models are reformed as a Gaussian mixture model (GMM) in
each HMM-state. A speech parameter trajectory in each com-
ponent is separately generated from the corresponding GMMs
using the ML criterion. The proposed methods also enables
to effectively use probability distributions of individual com-
ponents from different waveform segments as in the original
HMM-based speech synthesis. We conducted several experi-
mental evaluations from various perspectives to demonstrate the
effectiveness of the proposed parameter methods.

This paper is organized as follows. In section 2, traditional
HMM-based speech synthesis framework is briefly reviewed.
In section 3, the rich context modeling is described. In section
4, the proposed parameter generation methods are described. In
section 5, the experimental evaluation results and some discus-
sions are given. Section 6 presents conclusions of this paper.

2. Traditional Framework
In HMM-based speech synthesis, various contextual factors are
used to capture both segmental and prosodic features. Since
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combinationsof the contextual factors increase exponentially
and the number of them is enormously large, one context label
(called ”full context”) usually corresponds to only one acoustic
segment in training data. To robustly train context-dependent
HMMs, different full context labels are tied together in a deci-
sion tree structure and an output probability density functionbc
is calculated in each leaf node of the decision tree in training
part [10], which is given by

bc (ot) = N (ot;µc,Σc) , (1)

whereot =
[
c⊤t ,∆c⊤t ,∆∆c⊤t

]⊤
is a feature vector includ-

ing static feature,ct, and dynamic features,∆ct，∆∆ct. The
Gaussian distribution is denoted asN (·;µc,Σc), whereµc

andΣc are a mean vector and a covariance matrix in thec-th
leaf node, respectively.

In synthesis part, full context labels to be synthesized are
clustered with the decision tree and output probability density
functions at corresponding leaf nodes are selected to form a sen-
tence HMM. Then, a time sequence of the static feature vectors

c =
[
c⊤1 , · · · , c⊤T

]⊤
is generated by maximizing the HMM

likelihood under a constraint on the explicit relationship be-
tween static and dynamic features (o = Wc) [8]. It is well
known that the generated speech parameters are over-smoothed
and this over-smoothing effect causes significant degradation in
synthetic speech quality.

3. Rich Context Modeling
In the traditional approach, a single Gaussian distribution is
used to model multiple acoustic segments belonging to the same
leaf nodes in the decision tree. Consequently its mean vector is
excessively smoothed and it becomes one of the factors caus-
ing the over-smoothing effect. On the other hand, the use of
multiple acoustic segments is essential to robustly estimate its
covariance matrix. To alleviate the over-smoothing effect while
keeping robustness of parameter estimation high enough, in the
rich context model a mean vector is trained for each full context
label and a covariance matrix is tied over different full context
labels belonging to each leaf node of the decision tree [9]. The
output probability density function for them-th full context la-
bel in thec-th leaf node is given by

bc,m (ot) = N
(
ot;µc,m,Σc

)
. (2)

The total number of different mean vectors is equivalent to the
number of full context labels in training data. The total number
of different covariance matrices is equivalent to the number of
leaf nodes in the decision tree.

In training part, the context-clustered probability density
parameters are trained in a traditional way. Then, they are un-
tied and only their mean vectors are further updated in every full
context label using forward-backward algorithm while tying the
covariance matrices over full context labels in each leaf node. In
synthesis part, probability density functions for all components
are jointly selected based on KL divergence between traditional
context-clustered model and the rich context model while avoid-
ing selecting the probability density functions for individual
components from different acoustic segments. This process is
regarded as unit selection but each acoustic segment is repre-
sented by probability density functions in individual compo-
nents. Finally, speech parameter trajectories are generated from
the selected probability density functions.

4. Parameter Generation Method Using
Rich Context Models

We propose parameter generation methods for selecting the rich
context models based on the ML criterion. The proposed meth-

Figure1: Training and synthesis processes in proposed methods

ods keep flexibility in acoustic modeling of different speech
component parameters in the traditional framework, which is
lost in the conventional synthesis method described in section
3. The training and synthesis processes are shown in Figure 1.

4.1. Representation as GMM

After training the rich context models in the same manner as
in the conventional method, the output probability density in
each leaf node is modeled by a GMM developed using all rich
context models in the same leaf node as follows:

bc (ot) =

Mc∑
m=1

ωmN
(
ot;µc,m,Σc

)
, (3)

whereωm is the mixture component weight of them-th rich
context model, and the total number of mixture components is
Mc. We can calculate the ML estimate ofωm based on the
occupancy counts given by forward-backward algorithm but in
this paper we set it to an equivalent value (ωm = 1/Mc) over
different mixture components since we have found this weight
setting yields slight quality improvements in synthetic speech.

4.2. Parameter Generation

Given a state sequenceq = [q1, · · · , qT ]⊤, which is determined
in a traditional way, the HMM likelihood is written as

P (o|q, λ) =
∑

all m

P (o,m|q, λ), (4)

wherem = [m1, · · · ,mT ]
⊤ , o =

[
o⊤
1 , · · · ,o⊤

T

]⊤
, andλ

are a mixture component sequence (i.e., a rich context model
sequence), a feature vector sequence, and an HMM parameter
set, respectively. The static feature vector sequence is deter-
mined by maximizing the HMM likelihood under the constraint
(o = Wc) as in the traditional parameter generation process
[8] as follows:

ĉ = argmax
c

∑
all m

P (o,m|q, λ). (5)

4.2.1. EM algorithm

The ML estimate of c is determined with expectation-
maximization (EM) algorithm. First, an initial static feature
vector sequencec(0) is determined. Then, the following auxil-
iary function is maximized by iteratively updating the posterior
probabilityP

(
m|Wc(i), q, λ

)
given a current estimatec(i) in

E-step and a new estimatêc(i+1) while fixing it constant in
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M-step:

Q
(
c(i), c(i+1)

)
=∑

all m

P
(
m|Wc(i), q, λ

)
lnP

(
Wc(i+1),m|q, λ

)
.(6)

4.2.2. Approximation with a single mixture component se-
quence

We approximate the HMM likelihood given in Eq. (4) with a
single mixture component sequence as follows:∑

all m

P (o,m|q, λ) ≃ P (o,m|q, λ) . (7)

After determining the initial static feature vector sequencec(0),
the single mixture component sequence and the static feature
vector sequence is iteratively updated as follows :

m̂(i+1) = argmax
m

P
(
m|Wc(i), q, λ

)
, (8)

ĉ(i+1) = argmax
c

P
(
Wc|m̂(i+1), q, λ

)
. (9)

4.2.3. Discussion

One rich context model usually corresponds to one HMM-
state acoustic segment. Therefore, the proposed processes are
strongly related to unit selection. In the proposed methods, the
HMM likelihood for the static features and that for the dynamic
features are regarded as a target cost and a concatenation cost,
respectively [11]. The synthesis process with EM algorithm is
similar to the process of selecting multiple acoustic segments
and mixing them to generate speech parameters [12]. On the
other hand, the synthesis process with a single mixture com-
ponent sequence is similar to the process of selecting a single
acoustic segment sequence to generate speech parameters [2].

The proposed methods don’t have to use the constraint used
in the conventional selection method of the rich context models.
Therefore, the proposed methods keep an advantage of flexible
acoustic modeling in the traditional HMM-based speech syn-
thesis. For instance, it is possible to separately search the best
rich context model sequences for different speech component
parameters to more widely cover a joint acoustic space. It is
also straightforward to apply different speech parameter gener-
ation methods to individual speech component parameters.

In the proposed methods, the rich context models are se-
lected frame by frame. We can also select them state by state by
using an additional constraint that the same rich context model
is selected within the same HMM-state. Moreover, there are
some ways to determine the initial feature vector sequence. One
of the reasonable ways is to use the sequence generated by the
context-clustered HMMs in the traditional manner.

5. Experimental Evaluations
5.1. Experimental Conditions
We trained the context-dependent HSMM for a Japanese fe-
male speaker in a standard manner. We used 450 sentences
for phonetically balanced 503 sentences from ATR Japanese
speech database [13] for training, and 53 sentences for evalua-
tion. Speech signals were sampled at 16 kHz. Mel-cepstral co-
efficients were extracted by STRAIGHT [14]. The shift length
was set to 5 ms. The feature vector consisted of 25 mel-cepstral
coefficients including the zeroth coefficient as a spectral param-
eter and both log-scaledF0 and 5 band-aperiodicity as excita-
tion parameters. We used 5-state left-to-right HSMMs. The rich
context models were trained for only spectral component in this
paper. In synthesis, a global variance [15] was not considered .

89 

90 

91 

92 

93 

Lo
g

 L
ik

e
li

h
o

o
d

Before iteration

After iteration

87 

88 

89 

Lo
g

 L
ik

e
li

h
o

o
d

Initial Feature

(a) Likelihood for generated pa-
rameter

51 

53 

55 

57 

59 

61 

63 

Lo
g

 L
ik

e
li

h
o

o
d

Before iteration

After iteration

45 

47 

49 

51 

Lo
g

 L
ik

e
li

h
o

o
d

Initial Feature

(b) Likelihood for natural param-
eter

Figure 2: Effect of initial parameter sequence

We conducted two kinds of experimental evaluations. First,
we investigated the proposed methods from various perspec-
tives. To clarify the effectiveness of the proposed synthesis
process in the spectral component, natural state duration de-
termined by the state-level forced alignment with the conven-
tional context-clustered models was used in the first evaluation.
In the other evaluation, the proposed method was evaluated in
fully synthesis process including duration,F0, 5-band aperiod-
icity, and spectral parameter generation. Note that the conven-
tional context-clustered models were used for duration,F0, and
5-band aperiodicity in all evaluations.

5.2. Evaluations in Natural State Duration

5.2.1. Effect of Initial Parameter Sequence
To investigate the effect of the initial parameter sequence on
the finally generated speech parameter sequence, we evaluated
three settings of the initial parameter sequence; 1) Randomized:
generated from rich context models randomly selected in indi-
vidual leaf nodes, 2) Conventional: generated from the conven-
tional context-clustered models, and 3) Target: generated from
rich context models selected by maximizing the likelihood for
natural target speech parameters. We used the approximation of
a single mixture component sequence in the proposed method.
An initially selected rich context model sequence and a finally
selected rich context model sequence were evaluated with not
only the likelihood for the generated speech parameters but also
that for natural speech parameters.

The result is shown in Figure 2. It is reasonable that
the likelihood for the generated speech parameters increases
through the iteration as shown in Figure 2(a). On the other hand,
the likelihood for the natural speech parameters does not always
increase through the iteration and its value strongly depends on
the initial parameter sequence as shown in Figure 2(b). We can
also see that the likelihood differences in Figure 2(b) is much
larger than those in Figure 2(a). From these results, it is shown
that the setting of the initial parameter sequence is essential and
it is difficult to find the best rich context models using the like-
lihood measure.

5.2.2. Comparison of Proposed Parameter Generation Meth-
ods
To evaluate proposed methods, we compared synthetic speech
generated by the conventional clustered model (Conventional),
the proposed method with EM algorithm (Proposed(GMM)),
the proposed method with a single mixture component sequence
(Proposed(single)), and the single mixture component sequence
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Figure3: Preference Scores for Speech Quality

selected by the natural speech parameters as a reference (Pro-
posed(target)). The initial parameter sequence in the proposed
methods was generated by ”Conventional”. A preference test
(AB test) on speech quality was conducted. Every pair of these
four types of synthetic speech was presented to seven listeners
in random order. Listeners were asked which sample sounds
better in terms of speech quality.

The result is shown in Figure 3(a). The proposed meth-
ods significantly improve speech quality. Moreover, the use
of a single mixture component sequence yields better speech
quality than the use of EM algorithm. We can also see that the
best rich context model sequence, which is well approximated
with ”Proposed(target)”, is difficult to select using the likeli-
hood measure. This result is consistent with the result shown in
Figure 2(b).

5.2.3. Comparison of Selection Unit

To investigate the effect of the selection unit in the proposed
method, i.e., frame-based selection or state-based selection, we
compared synthetic speech generated by the conventional clus-
tered model (Conventional), the proposed method with a single
mixture component sequence selected frame by frame (Frame-
based), and that selected state by state (State-based). In the
selection process of the proposed method, the natural speech
samples were used as the target. We confirmed that the mix-
ture component sequences selected by these two methods were
different from each other.

The result is shown in Figure 3(b). We can see that there is
no significant difference between the frame-based selection and
the state-based selection and the state-based selection is also
effective for improving synthetic speech quality.

5.3. Evaluation in Full Synthesis
To confirm the effectiveness of the proposed method in fully
synthesis process where all speech parameters were generated
from the models, we compared synthetic speech generated by
the conventional clustered model (Conventional), the proposed
method with a single mixture component sequence selected
state by state (Proposed(single)), and the single mixture com-
ponent sequence selected state by state using the natural target
speech parameters as a reference (Proposed(target)). The initial
parameter sequence in the proposed method was generated by
”Conventional”. A preference test (AB test) on speech quality
was conducted in the same manner as in Section 5.2.2.

The result is shown in Figure 3(c). It is observed that
the proposed method yields significant quality improvements
in synthetic speech even in fully synthesis process. We can

find that the difference between ”Proposed(single)” and ”Pro-
posed(target)” is larger in Figure 3(c) than that in Figure 3(a).
We will investigate what causes this difference in future work.

6. Conclusions
In this paper, we have proposed parameter generation methods
using rich context models in HMM-based speech synthesis to
improve quality of synthetic speech while keeping capability of
flexibly modeling acoustic features. The rich context models
are reformed as the GMM and the likelihood measure is used
in speech parameter generation. Various experimental results
have demonstrated the effectiveness of the proposed methods.
However, it has also shown that suitable rich context models
are not selected by using the likelihood as a selection measure.
As future work, we will improve the selection measure.
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