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ABSTRACT
This paper describes a voice quality control method in statistical
esophageal speech enhancement. Esophageal speech is produced
by one of the alternative speaking methods for laryngectomees. Its
naturalness and intelligibility are much lower than those of natural
voices and its voice quality sounds similar even if uttered by differ-
ent laryngectomees. These issues are alleviated by a statistical voice
conversion method from esophageal speech into normal speech (ES-
to-Speech) based on eigenvoices. This method is capable of deter-
mining converted voice quality using a few target voice samples.
In this paper, we propose ES-to-Speech using regression techniques
to make it possible to manually control the converted voice quality
by manipulating a few intuitively controllable parameters even if no
target voice sample is available. The effectiveness of the proposed
method is confirmed by experimental evaluations.

Index Terms— Esophageal speech, speech enhancement, voice
conversion, voice quality control, kernel regression

1. INTRODUCTION

Laryngectomees who have undergone a total laryngectomy due to
an accident or laryngeal cancer cannot produce speech sounds in a
usual way because their vocal folds have been removed. They need
alternative speaking methods for producing speech sounds. The pro-
duced speech is called alaryngeal speech and esophageal speech is
a type of alaryngeal speech. In producing esophageal speech, exci-
tation signals are produced by releasing gases from or through the
esophagus, and then they are articulated. Esophageal speech sounds
more natural than other types of alaryngeal speech, such as electrola-
ryngeal speech. However, the severe degradation of naturalness and
intelligibility of esophageal speech caused by its specific production
mechanism is observed compared with normal speech. Moreover,
its voice quality is similar even if different laryngectomees speak.
Consequently, esophageal speech also suffers from the severe degra-
dation of speaker individuality.

To improve esophageal speech quality, several attempts based
on the modifications of acoustic features of esophageal speech using
signal processing, such as comb filtering [1] or smoothing of acous-
tic parameters [2], have been carried out. Although they are useful in
the esophageal speech enhancement, quality improvements are still
limited since the acoustic features of esophageal speech exhibit quite
different properties from those of normal speech. Therefore, it is ba-
sically difficult to compensate for those acoustic differences using
such a simple modification process.

To significantly improve the naturalness, intelligibility, and
speaker individuality of esophageal speech, a statistical method
for converting esophageal speech into normal speech (ES-to-
Speech) has been proposed [3]. A statistical voice conversion (VC)
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method [4, 5] is effectively used for converting acoustic features
of esophageal speech to those of normal speech. Furthermore, to
recover speaker individuality, one-to-many eigenvoice conversion
(EVC) [6] has also been implemented for ES-to-Speech to make
it possible to flexibly adapt voice quality of the converted speech
to that of given target speech samples. Although it is effective for
producing more varieties of voice quality, it does not work if any
target speech samples with desired voice quality are not available.
A technique for manually controlling voice quality is effective to
develop a more flexible voice quality control framework.

As one of the statistical parametric speech synthesis techniques
capable of manually controlling voice quality of synthetic speech,
a multiple regression approach has been proposed in speech syn-
thesis based on hidden Markov model (HMM) [7]. This regression
approach has also been applied to one-to-many EVC [8]. In this
method, voice quality of various speakers is described by a few voice
quality control parameters based on primitive word pairs express-
ing specific voice quality factors [9]. To manually control converted
voice quality without any target voice samples, a subspace spanned
by a few representative vectors capturing the specific voice quality
factors is formed in a statistical conversion model by extending an
eigenvoice-based acoustic modeling technique [10].

Inspired by these methods, we propose voice quality control
methods in ES-to-Speech. Manual control of voice quality of the
converted speech is achieved by using a multiple regression Gaus-
sian mixture model (MR-GMM) in ES-to-Speech. To further im-
prove the performance of voice quality control in ES-to-Speech, we
propose a method for enhancing accuracy of the voice quality control
parameters and also propose a more accurate voice quality control
method based on kernel regression GMM (KR-GMM). The results
of several experimental evaluations are reported to show the effec-
tiveness of the proposed methods.

2. ES-TO-SPEECH BASED ON ONE-TO-MANY EVC

2.1. Training

Using multiple parallel datasets between esophageal speech of a la-
ryngectomee and normal speech of many pre-stored target speakers,
the joint probability density function (p.d.f.) of a source feature vec-
tor of esophageal speech, Xt, and a target feature vector of the sth

pre-stored target speaker’s normal speech, Y (s)
t , at frame t is mod-

eled by a one-to-many eigenvoice GMM (EV-GMM) [6] as follows:

P
(
Xt,Y

(s)
t |w(s),λ

)

=

M∑
m=1

αmN
([

Xt

Y
(s)
t

]
;

[
μ(X)

m

μ(Y,s)
m

]
,

[
Σ

(XX)
m Σ

(XY )
m

Σ
(Y X)
m Σ

(Y Y )
m

])
, (1)

μ(Y,s)
m = B(Y )

m w(s) + b
(Y )
m,0, (2)

4497978-1-4673-0046-9/12/$26.00 ©2012 IEEE ICASSP 2012



where N (·;μ,Σ) denotes a Gaussian distribution with a mean vec-
tor μ and a covariance matrix Σ. The total number of mixture-
components is M . The mixture-component weight αm, the source
mean vector μ(X)

m , and the covariance matrices Σ(XX)
m , Σ(XY )

m ,
Σ

(Y X)
m , and Σ(Y Y )

m are tied over every target speaker. On the other
hand, the target mean vector of the sth pre-stored target speaker
μ(Y,s)

m is factorized into mixture-component-dependent parameters
tied over every target speaker, i.e., a bias vector b(Y )

m,0 and repre-

sentative vectors B(Y )
m =

[
b
(Y )
m,1, · · · , b(Y )

m,J

]
, and a target-speaker-

dependent parameter tied over every mixture-component, i.e., an

adaptive vector w(s) =
[
w

(s)
1 , · · · , w(s)

J

]�
. Consequently, the EV-

GMM has the adaptive vector and a fixed parameter set λ consisting
of the other parameters.

To convert esophageal speech into normal speech, some parame-
ters of normal speech, such as spectrum, aperiodic components, and
F0, are estimated from a spectral parameter of esophageal speech
[3]. For the estimation of spectrum and aperiodic components, we
independently train two EV-GMMs modeling the joint p.d.f.s of the
spectral segment feature of esophageal speech and two features of
the normal speech parameters, spectrum and aperiodic components,
using corresponding joint feature vector sets. On the other hand, as
for the F0 estimation, a naturally varying F0 pattern corresponding
to perceivable pitch information of esophageal speech is estimated.
In other words, a statistical F0 estimation process for esophageal
speech is performed using the VC technique. To achieve such
an estimation process, normal speech carefully uttered by a non-
laryngectomee so that its pitch sounds similar to that of esophageal
speech is newly recorded. Then, its extracted F0 is used as the target
speech parameter to train a standard GMM modeling the joint p.d.f.
of the spectral segment feature of esophageal speech and the target
F0 feature corresponding to pitch of esophageal speech.

2.2. Adaptation and Conversion
As for the adaptation of spectrum and aperiodic components, each
EV-GMM is separately adapted to given target speech samples in an
unsupervised manner. An optimum value of the adaptive vector w
is determined by maximizing a marginal likelihood P (Y |w,λ) of
the EV-GMM for the given target speech features Y . For the F0

adaptation, global mean and standard deviation values are extracted
from the given target speech samples.

In conversion, spectrum and aperiodic components are sepa-
rately estimated from the spectral segment feature of esophageal
speech using the corresponding adapted EV-GMMs. F0 is estimated
from the spectral segment feature using the standard GMM. The
maximum likelihood estimation method considering dynamic fea-
tures and the global variance [5] is used in these estimation pro-
cesses. To adapt global F0 characteristics to those of the given target
speech samples, the estimated F0 pattern is linearly transformed so
as to its mean and standard deviation values over an utterance is
equivalent to the target values.

2.3. Limitation
In ES-to-Speech based on one-to-many EVC, only a few arbitrary
utterances of the target speech can be used as adaptation data. For
instance, even if there were only a small amount of the recorded
original voices of laryngectomees before a total laryngectomy, their
original voice quality would be recovered. However, those original
voices are not always available. Moreover, other voices different
from their original ones would be preferred by some people. There-
fore, the development of a technique for allowing laryngectomees to
customize voice quality as they want is desired.

3. VOICE QUALITY CONTROL IN ES-TO-SPEECH

We propose voice quality control methods in ES-to-Speech to make
it possible to manually control converted voice quality. It is essential
in voice quality control to design an intuitively controllable parame-
ter to be manipulated. One promising approach is to use perceptual
scores expressing specific voice quality factors. In the literature [9],
several primitive word pairs to efficiently represent voice quality of
various speakers, such as male/female for gender or elder/younger
for age, have been extracted through a large-sized perceptual evalua-
tion using normal speech of a lot of speakers. Based on this conven-
tional work, we use perceptual scores on these primitive word pairs
as the voice quality control parameter.

3.1. Voice Quality Control Based onMR-GMM in ES-to-Speech

The use of the MR-GMM allows us to manually control converted
voice quality [8]. In training, the multiple parallel datasets includ-
ing esophageal speech and normal speech of many pre-stored target
speakers are also used as in the conventional ES-to-Speech based on
one-to-many EVC. The perceptual scores on the primitive word pairs
are manually assigned to each pre-stored target speaker through lis-
tening to his/her natural voices. They are used to form a voice quality
control vector of each pre-stored target speaker: e.g., that of the sth

pre-stored target speaker is given by w
(s)
c =

[
w

(s)
c,1, · · · , w(s)

c,J

]�
,

where individual dimensional components (hereafter voice quality
control scores) are given by the manually assigned perceptual scores
on J primitive word pairs. Using the multiple parallel datasets and
the corresponding voice quality control vectors, the MR-GMM is
trained. A model structure of the MR-GMM is the same as that of
the EV-GMM but the voice quality control vector w(s)

c is used in-
stead of the adaptive vector w(s). Since the voice quality control
vectors of individual pre-stored target speakers are fixed during the
training, the resulting model parameters of the MR-GMM are differ-
ent from those of the EV-GMM. While the representative vectors of
the EV-GMM capture dominant voice characteristics over the pre-
stored target speakers, those of the MR-GMM capture specific voice
quality factors expressed by the primitive word pairs. Moreover, the
dimensionality of the voice quality control vector is usually much
lower than that of the adaptive vector since the use of a small num-
ber of control parameters is preferable in terms of controllability.

Two MR-GMMs for converting the spectral segment feature of
esophageal speech into spectrum or aperiodic components of nor-
mal speech are independently trained. As for the F0 control, global
mean and standard deviation values of the F0 pattern are extracted
for each pre-stored target speaker, and then, a relationship between
those values and the voice quality control vectors over all pre-stored
target speakers is modeled by multiple regression analysis.

In the conversion process, the voice quality control vector is
manually determined by manipulating each voice quality control
score to express the desired voice quality. Then, spectrum and
aperiodic components exhibiting the desired voice quality are inde-
pendently estimated from the spectral segment feature of esophageal
speech using the individual MR-GMMs adapted with the determined
voice quality control vector. The F0 pattern is estimated in the same
manner as in the conventional ES-to-Speech, and then, it is globally
converted so that its mean and standard deviation values are equal to
those values estimated from the voice quality control vector.

3.2. Assignment of Voice Quality Control Scores

In the traditional MR-GMM training [8], natural voices of each pre-
stored target speaker are used in the assignment of the voice qual-
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ity control scores. Therefore, various acoustic features of natural
speech, such as local F0 patterns, duration, and so on, affect the re-
sulting scores more or less even if they are not well controlled in
ES-to-Speech. Even in the spectral conversion, some spectral struc-
tures affecting voice quality perception would be lost by the effect
of statistical generalization. The mismatch between acoustic features
affecting the score assignment and those actually controlled in ES-
to-Speech causes the performance degradation in voice quality con-
trol. To minimize this mismatch, we propose the use of the converted
speech in the score assignment. Esophageal speech is converted
into each pre-stored target speaker’s voice with the target-speaker-
dependent GMMs in the conventional ES-to-Speech and the score
assignment is performed through listening to the converted speech
rather than natural voices. Since the converted speech does not in-
clude any varieties of the acoustic features not well modeled by the
GMMs, the resulting scores more precisely capture only varieties
of the voice quality practically controlled in ES-to-Speech than the
scores assigned by listening to natural voices.

3.3. Voice Quality Control Based on Kernel Regression GMM
(KR-GMM) in ES-to-Speech

In the MR-GMM, a relationship between each voice quality control
vector and the target mean vectors is assumed to be linearly mod-
eled. If such an assumption does not hold, the performance of voice
quality control is degraded. To model a more complicated relation-
ship between them, we propose a voice quality control method based
on the KR-GMM.

The voice quality control vector is mapped into a high dimen-
sional feature space and linear regression is performed there. In the
KR-GMM, given the voice quality control vector w(s)

c of the sth

pre-stored target speaker, the dth dimensional component of the tar-

get mean vector μ(Y,s)
m =

[
μ
(Y,s)
m,1 , · · · , μ(Y,s)

m,D

]�
is modeled by

μ
(Y,s)
m,d =

J∑
j=1

v�
j,m,dφ

(
w

(s)
c,j

)
, (3)

where φ(·) denotes the function to map each voice quality control
score to the feature space. A vector in the feature space vj,m,d can
be represented by

vj,m,d =

S∑
s=1

αj,m,d,sφ
(
w

(s)
c,j

)
, (4)

where the number of the pre-stored target speakers is S and the
weighting parameter for each data sample is αj,m,d,s, which is opti-
mized in kernel regression. Using Eq. (4), Eq. (3) is written as

μ
(Y,s)
m,d = αm,dk
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c

)
, (5)

where

αm,d = [α1,m,d, · · · ,αJ,m,d] , (6)
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w
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)]�
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and k(·, ·) denotes the kernel function. In this paper, the radial basis
function (RBF) kernel given below is used:

k (x,x′) = exp (−β||x− x′||) , (10)

where β is a parameter of the RBF kernel.

As the dependent variables in kernel regression, the target mean
vectors of the individual target-speaker-dependent GMMs are used,
which are developed by updating only the target mean vectors of the
MR-GMM using a parralel dataset corresponding to each pre-stored
target speaker. Note that they are no longer represented on the sub-
space of the MR-GMM since their factorized form is ignored in the
update. Let the dth dimensional components of the updated target
mean vectors of themth mixture-component over all pre-stored tar-
get speakers be μ̂

(Y,1:S)
m,d =

[
μ̂
(Y,1)
m,d , · · · , μ̂(Y,S)

m,d

]
. The objective

function of kernel regression is given by

ε2m,d =
(
μ̂

(Y,1:S)
m,d −αm,dK
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+γαm,dα
�
m,d, (11)

whereK(1:S) =
[
k
(
w

(1)
c

)
, · · · ,k

(
w

(S)
c
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and a parameter for

L2 norm regularization is γ. The weighting parameters optimized
by the minimization of the objective function are given by

α̂m,d = μ̂
(Y,1:S)
m,d K(1:S)�

(
K(1:S)K(1:S)� + γI

)−1

. (12)

Consequently, the target mean vectors of the KR-GMM are given by

μ(Y,s)
m =

[
α̂�

m,1, · · · , α̂�
m,D

]�
k
(
w(s)

c

)
. (13)

Two KR-GMMs for the conversion into spectrum and into aperi-
odic components are separately trained. The kernel regression is also
used for the estimation of the F0 mean and standard deviations for
given the voice quality control vector. In this paper, the parameter of
kernel function β and the regularization parameter γ are optimized
with cross-validation to maximize the conversion performance.

4. EXPERIMENTAL EVALUATIONS
4.1. Experimental Conditions
We recorded 50 phoneme-balanced sentences of esophageal speech
uttered by one Japanese male laryngectomee. The same sentences
of normal speech uttered by 61 Japanese non-laryngectomees (male
34, female 27) were recorded for training the MR-GMMs/KR-
GMMs. Those of pitch-controlled normal speech uttered by one
Japanese non-laryngectomee were also recorded for training the
standard GMM used for the F0 estimation. Forty sentences out of
the recorded 50 sentences were used for training and the remaining
10 sentences were used for evaluation. Several parameters such as
the number of mixture-components of the MR-GMMs/KR-GMMs
were experimentally optimized.

The 0th through 24th mel-cepstral coefficients were used as the
spectral parameter. As the excitation parameters of normal speech,
we used log-scaled F0 and aperiodic components on five frequency
bands (0-1, 1-2, 2-4, 4-6, and 6-8 kHz) for designing mixed excita-
tion. STRAIGHT [11] was used in analysis of normal speech.

To define the voice quality control vector, we used a 5-scaled
score (-2: very, -1: somewhat, 0: no preference, 1: somewhat, 2:
very) for 5 Japanese primitive word pairs expressing voice quality
factors, such as male/female (gender), husky/clear (clearness), el-
der/younger (age), deep/thin (deepness), and weak/strong (forceful-
ness). One Japanese male subject assigned these scores to each of the
pre-stored target speakers. The assigned scores for each word pair
were normalized into Z-score (zero mean and unit variance) over all
pre-stored target speakers. Although the results can not be shown
here due to lack of space, we confirmed that the use of the scores as-
signed to the converted speech as described in Section 3.2makes re-
sults of voice quality control more stable compared with those when
using the scores assigned to natural voices.
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4.2. Experimental Results
4.2.1. Evaluation of Controllability
We conducted subjective evaluations of voice quality control. The
number of listeners was 10. Five test sentences were used. For each
sentence, we synthesized 5 samples of the converted speech by vary-
ing only one voice quality control score from -2 to 2 in 5 steps while
setting the other voice quality control scores to zero. The converted
speech samples when setting every voice quality control score to
zero were also synthesized as reference speech. Each listener com-
pared the voice quality of the converted speech with that of the ref-
erence speech using a 5-scaled score (-2: very, -1: somewhat, 0: no
difference, 1: somewhat, 2: very) for the primitive word pair corre-
sponding to that on the varied voice quality control score.

Figure 1 shows a result of voice quality control on deepness.
The perceptual score well correlates to the setting of the voice qual-
ity control score in both the EV-GMM and the KR-GMM. We have
found that good correlation between those two scores can also be ob-
served when manipulating other voice quality control scores. These
results show that the proposed methods are capable of effectively
controlling voice quality of the converted speech in ES-to-Speech
by manipulating the voice quality control vector.

We can also see that the KR-GMM is capable of generating con-
verted speech of which voice quality varies more widely and is closer
to the setting of voice quality control score compared with the MR-
GMM. Discussion on a comparison between the MR-GMM and the
KR-GMM is shown below.

4.2.2. Evaluation of Naturalness
We also conducted opinion tests of naturalness. Naturalness of the
converted speech was evaluated using a 5-scaled opinion score (from
1: very bad to 5: excellent). The other experimental conditions were
the same as those in the previous evaluations on controllability.

Figure 2 shows a result when manipulating only the voice qual-
ity control score on deepness. We can see that naturalness of the
converted speech starts to be degraded when the voice quality con-
trol score is set to too large or too small values. Therefore, it is better
to keep the voice quality control score in a reasonable score range.
Although there is no significant difference between the MR-GMM
and the KR-GMM in this figure, the KR-GMM is capable of con-
trolling target voice quality more widely than the MR-GMM using
the same range of voice quality control score as shown in Figure 1.
We have also found that the KR-GMM can significantly reduce the
degradation of naturalness caused by setting the voice quality con-
trol score to too small values compared with the MR-GMM when
manipulating another voice quality control score. These results sug-
gest that the KR-GMM is more effective than the MR-GMM for
voice quality control in ES-to-Speech.

5. CONCLUSION

This paper has described novel methods to intuitively control voice
quality in esophageal speech enhancement based on statistical voice
conversion. The multiple regression Gaussian mixture model (MR-
GMM) has been implemented for a statistical conversion process
from the esophageal speech into normal speech (ES-to-Speech).
Moreover, the kernel regression GMM (KR-GMM) has been pro-
posed to further improve the controllability of the voice quality. The
experimental results have showed that 1) our proposed methods al-
low a laryngectomee to control voice quality of the converted speech
by manipulating a few control parameters on primitive word pairs
expressing specific voice quality factors and 2) the KR-GMM yields
better performance in voice quality control than the MR-GMM.
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