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Abstract—In this paper, we propose a blind noise suppression
method for Non-Audible Murmur (NAM) recognition. NAM is a
very soft whispered voice detected with NAM microphone, which
is one of the body-conductive microphones. Due to its recording
mechanism, the detected signal suffers from noise caused by
speaker’s movements. In the proposed method using a stereo
signal detected with two NAMmicrophones, the noise is estimated
with blind source separation, and then, spectral subtraction is
performed in each channel to reduce the noise. Moreover, channel
selection is performed frame by frame to generate less distorted
monaural NAM signal. Experimental results show that 1) word
accuracy in large vocabulary continuous NAM recognition is
degraded from 69.2% to 53.6% by the noise and 2) it is
significantly recovered to 63.3% in a simulated situation and
58.6% in a real situation with the proposed method.

I. INTRODUCTION

The explosive spread of portable devices with a lot of
functions makes us realize importance of the development of
natural interfaces to use them. A speech interface is one of
the typical natural interfaces and speech recognition is a key
technology to develop it. Although speech is a convenient
medium, there are actually some situations where we face
difficulties in using speech. For example, we would have
trouble privately talking in a crowd; and speaking itself would
sometimes annoy others in quiet environments such as in a
library. The development of technologies to overcome these
inherent problems of speech is essential.
Recently, silent speech interfaces [1] have attracted attention

as a technology to make speech interfaces more convenient.
They enable speech input to take place without the necessity of
emitting an audible acoustic signal. New sensing devices as al-
ternatives to the air-conductive microphone have been explored
to detect silent speech signals, such as the throat microphone
[2], electromyography (EMG) [3], ultrasound imaging [4], and
so on. These sensing devices are also effective as noise robust
speech interfaces; e.g., Subramanya et al. [5] have reported
that bone-conducted speech signals can be effectively used to
enhance speech sounds under noisy conditions.
As one of the sensing devices to detect silent speech signals,

Nakajima et al. [6] developed a Non-Audible Murmur (NAM)
microphone. NAM is an extremely soft whispered voice,
which is so quiet that people around the speaker hardly hear
its emitted sound. Placed on the neck below the ear, the NAM

microphone is capable of detecting extremely soft speech such
as NAM from the skin through only the soft tissues of the
head. It is capable of high-quality body-conductive recording
and its usability is better than those of other devices such as
EMG or ultrasound systems. There have been several attempts
to develop a NAM recognition system by modeling acoustic
characteristics of NAM [7], [8], [9], which are very different
from those of normal speech.
In the conventional studies of NAM recognition, the speak-

ers tried maintaining their positions as stably as possible
during speaking to keep a setting condition of the NAM
microphone as constantly as possible. However, this constraint
will not be enforced in a real situation; the speaker often moves
in speaking. Since the detected signal with NAM microphone
is sensitive to the setting condition of the NAM microphone
such as the pressure to attach the NAM microphone, noise is
easily generated when the speaker moves. For example, when
the speaker moves his/her head to look away, noticeable noise
is generated if the attachment plane of the NAM microphone
is rubbed by the skin. The NAM signal easily suffers from
the generated noise and NAM recognition performance is
significantly degraded. Since the generated noise is non-
stationary and its frequency components widely overlap those
of the NAM signal, it is not straightforward to suppress it.
In this paper, we propose a blind noise suppression method

using stereo signal processing. A stereo signal is detected
with two NAM microphones attached below the both ears.
Blind Spatial Subtraction Array (BSSA) [10] is used to es-
timate the non-stationary noise signal by cancelling a target
signal (i.e., the NAM signal) with the beam forming process.
In BSSA, unsupervised optimization of the beam former is
performed with independent component analysis (ICA). And
then, spectral subtraction (SS) [11] is performed with the
estimated noise signal to reduce the noise in each channel.
Moreover, to generate less distorted monaural NAM signal
to be used in NAM recognition, frame-wise channel selection
based on a time-varying signal-to-noise ratio (SNR) calculated
with the estimated noise signal is implemented. We conduct
experimental evaluations in large vocabulary continuous NAM
recognition to show that the proposed method significantly
improves NAM recognition performance by suppressing the
noise caused by the speaker’s movements.
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Fig. 1. Setting position and structure of NAM microphone.

Fig. 2. Example of waveform and spectrogram of NAM signal.

II. NON-AUDIBLE MURMUR RECOGNITION
A. Non-Audible Murmur (NAM)
NAM is defined as the articulated production of respiratory

sounds without using the vocal-fold vibration, which can be
conducted through only the soft tissues of the head without
any obstruction such as bones [6]. NAM is recorded using the
NAM microphone attached to the skin surface behind the ear,
as shown in Figure 1. In this work, a neckband-type of NAM
microphone [7], which presses NAM microphone against the
place, is used to stably attach it. Because NAM is a particularly
soft whispered voice, it is amplified with a special amplifier.
Figure 2 shows an example of waveform and spectrogram of
NAM. High-frequency components of NAM are usually not
well observed owing to the mechanisms of body conduction,
such as lack of radiation characteristics from lips and effect
of low-pass characteristics of the soft tissues.

B. Conventional Work of NAM Recognition
The main difference between a normal speech recognition

system and a NAM recognition system is an acoustic model.
Since the amount of NAM data is still limited, most of the
conventional work focused on the development of speaker-
dependent NAM acoustic models. It has been reported that
model adaptation techniques such as Maximum Likelihood
Linear Regression (MLLR) [12] is effective to develop hidden
Markov models (HMMs) for NAM from those for normal
speech [8]. Moreover, the adapted speaker-dependent NAM
acoustic models are further improved by refining the initial
HMMs using NAM data from multiple different speakers [7]
and also using many speakers’ normal speech data transformed
into NAM acoustic space [9]. Consequently, around 70% word
accuracy has been achieved for various speakers in large
vocabulary continuous NAM recognition. On the other hand,

Fig. 3. Example of waveform and spectrogram of NAM signal when the
speaker moves during speaking.

the effect of noise generated by the speaker’s movements has
been minimized in these studies by asking the speakers to
maintain their positions as stably as possible during speaking.

C. Effect of Speaker’s Movements on NAM Signal
The skin surface and muscles around the place of attachment

of the NAM microphone usually move in conjunction with the
speaker’s movements in particular such as the movements of
his/her head. These movements often change the setting condi-
tion of the NAM microphone. Figure 3 shows an example of
waveform and spectrogram of NAM when the speaker lightly
shakes his head. We can see that the NAM signal is severely
deteriorated by noise caused by the speaker’s movements. The
generated noise is non-stationary and causes substantially large
acoustic differences compared with the NAM signal shown in
Figure 2.

III. BLIND NOISE SUPPRESSION WITH STEREO SIGNALS
FOR NAM RECOGNITION

In the proposed method, two NAM microphones are placed
on the neck below the both ears to detect a stereo signal.
The stereo signal allows us to use various effective noise
suppression techniques such as the beam forming process.
First, we represent the sound mixing model in the stereo signal
detected with the NAM microphones. And then, the proposed
blind noise suppression method is described.

A. Stereo Signal Modeling
When the speaker does not move, the stereo signal of NAM

without suffering from any non-stationary noises is detected.
A short-time analysis of the detected stereo signal is conducted
by frame-by-frame discrete Fourier transform (DFT). The
detected stereo NAM signal s(f, τ) = [s1(f, τ), s2(f, τ)]

�

consisting of the first channel signal s1(f, τ) and the second
channel signal s2(f, τ) is modeled by

s(f, τ) = a(f)s0(f, τ), (1)

where � denotes transposition of the vector, f is the fre-
quency bin, and τ is the time index of DFT analysis. A
component of the NAM signal before the body conduction is
given by s0(f, τ), which is unobserved. It is linearly filtered
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Fig. 4. Example of waveform and spectrogram of stereo NAM signal (top:
the 1st channel, bottom: the 2nd channel).

with channel-dependent and time-invariant transfer functions
a(f) = [a1(f), a2(f)]

�, which are affected by various factors
such as a setting position of the NAM microphone, a setting
of the amplifier, and so on. Figure 4 shows an example of the
stereo NAM signal. We can see that there are some acoustic
differences between NAM signals in different channels but
they highly correlate to each other. We have confirmed from
a result of our preliminary experiment that the NAM signal
in one channel is effectively cancelled by the linearly filtered
NAM signal in the other channel.
Non-stationary noise is generated depending on the

speaker’s movements. Figure 5 shows an example of the
stereo noise signal caused by a light shake of the head. The
noise signals in individual channels seem to be synchronized
at some parts but the correlation between them is actually
weak. Therefore, the detected stereo noise signal is modeled
by n(f, τ) = [n1(f, τ), n2(f, τ)]

� as diffuse noise signals. It
may also be modeled by

n(f, τ) = b(f, τ)n0(f, τ), (2)

where a component of an unobserved noise signal given
by n0(f, τ) is linearly filtered by channel-dependent and
time-variant transfer functions b(f, τ) = [b1(f, τ), b2(f, τ)]

�

affected by the changes of setting conditions of individual
NAM microphones.
Assuming that the non-stationary noise is additive to the

NAM signal, the detected stereo signal when the speaker

Fig. 5. Example of waveform and spectrogram of stereo noise signal caused
by speaker’s movement (top: the 1st channel, bottom: the 2nd channel).

moves during speaking in NAM is modeled by

x(f, τ) � a(f)s0(f, τ) + n(f, τ). (3)

Note that to simplify the mixing process we also assume that
the speaker’s movements do not change the transfer function
a(f). It is investigated in Section IV-B whether or not this
assumption is valid.

B. Blind Spatial Subtraction Array (BSSA)
BSSA [10] is a blind noise suppression method based on

two key processes, 1) noise estimation based on the target
signal canceller with an adaptive beam former designed by
blind source separation (BSS) based on ICA and 2) SS with the
estimated noise signal. This technique is capable of effectively
enhancing the target signal as long as it is well suppressed by
the beam former even if the additive noise signal is diffuse,
which is essentially difficult to be suppressed by the beam
former. These conditions are matched with the mixing process
given by Eq. (3). Moreover, since BSSA is a blind process, we
don’t have to know a position of microphones, the direction
of arrival (DOA) of the target signal, and so on. In our case,
the position of NAM microphones and the transfer function
in Eq. (1) substantially vary depending on individual speakers
and the setting conditions of NAM microphones. Moreover,
we don’t know the DOA of the NAM signal. Therefore, the
blind process is essential in NAM recognition. The proposed
noise reduction process based on BSSA for NAM recognition
is shown in Figure 6.
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Fig. 6. Block diagram of BSSA for NAM recognition.
1) Noise Estimation Process: Frequency domain ICA (FD-

ICA) based on higher-order statistics is used to estimate the
noise signal. The detected stereo mixed-signal is separated
with the complex valued unmixing matrix W ICA(f) so that
the output signals o(f, τ) = [o1(f, τ), o2(f, τ)]

� become
mutually independent. The output signals are given by

o(f, τ) = W ICA(f)x(f, τ), (4)

where the unmixing matrix W ICA(f) is determined by mini-
mizing Kullback-Leibler divergence between the joint proba-
bility density function p(o(f, τ)) and the marginal probability
density function p(o1(f, τ))p(o2(f, τ)) over a time sequence.
The optimalW ICA(f) is obtained using the iterative equation:

W
[i+1]
ICA = W

[i]
ICA(f)

+α
[
I − 〈Φ(o(f, τ))oH(f, τ)〉τ

]
W

[i]
ICA(f), (5)

where α is the step-size parameter, [i] indicates the value of the
i-th step in iterations, I is the identity matrix, 〈·〉τ denotes the
time-averaging operator, H denotes Hermitian transposition,
and Φ(·) is the nonlinear vector function [13]. In this paper,
we determine the unmixing matrix utterance by utterance.
In the mixed signal modeled by Eq. (3), the separation pro-

cess given by Eq. (4) is not obviously capable of suppressing
the noise signal n(f, τ). On the other hand, it is capable of
suppressing a component of the NAM signal s0(f, τ). In other
words, it is capable of well estimating a component related to
the noise signal n0(f, τ). Therefore, only the noise component
is useful in the output signals. To remove the NAM signal from
the output signals, the following “noise-only” signal vector
o(n)(f, τ) is constructed:

o(n)(f, τ) = [0, o2(f, τ)]
�. (6)

An initial matrix of W ICA is designed so that o2(f, τ)
becomes the noise component. The DOA analysis may also
be used to determine which is the noise component, o1(f, τ)
or o2(f, τ) [13]. And then, the projection back (PB) process
[14] is performed to remove the ambiguity of amplitude and
estimate the non-stationary stereo noise signal n̂(f, τ) =
[n̂1(f, τ), n̂2(f, τ)]

� as follows:

n̂(f, τ) = W+
ICA(f)o

(n)(f, τ) (7)

whereM+ denotes the Moore-Penrose pseudo inverse matrix
of M . It is obvious that this noise estimation is not perfect.
But it is still useful to enhance the NAM signal with nonlinear
noise reduction process using the noise spectral amplitude.

2) Noise Reduction Process: In the noise reduction process,
SS using power spectrum of the estimated noise signals
is performed to effectively reduce the non-stationary noise
components. In the original BSSA, the delay-and-sum (DS)
process is performed to combine the multi-channel target
and noise signals into monaural target and noise signals
before the SS. On the other hand, it is not straightforward
to combine the stereo NAM signal into the monaural NAM
signal with the DS process since the transfer function of
the NAM signal in each channel (i.e., each component of
a(f) in Eq. (1)) is quite different from each other and
highly depends on not only the DOA but also various factors.
Therefore, in the proposed method, SS is performed in each
channel. Moreover, to improve the noise estimation accuracy,
power spectrum of the estimated noise signal in each channel
is compensated with frequency-dependent and time-invariant
weights. These weights are determined so that the time-
averaged power spectrum of the estimated noise signal in a
noise-only segment (e.g., a silence part at the beggining of
an utterance) is close to that of the detected mixed-signal
in the corresponding noise-only segment, which is regarded
as the target reference. The generalized SS (GSS) [15] is
performed to reduce the artificial distortion usually caused by
an oversubtraction as much as possible. The enhanced stereo
NAM signal ŝ(f, τ) = [ŝ1(f, τ), ŝ2(f, τ)]

� extracted from the
detected stereo mixed-signal x(f, τ) is given by

ŝc(f, τ)=

⎧⎨
⎩

2ξ
√|xc(f, τ)|2ξ − β|n̂c(f, τ)|2ξej arg(xc(f,τ))

(if |xc(f, τ)|2ξ > β|n̂c(f, τ)|2ξ)
0 (otherwise)

, (8)

where c is a channel index (c = 1, 2), β is an oversubtraction
parameter, and ξ is an exponential domain parameter.
The estimated stereo NAM signal includes the residual

noise components and is still artificially distorted even if
carefully tuning the GSS parameters. Consequently, there are
negligible acoustic differences between the enhanced stereo
NAM signal ŝ(f, τ) and the original stereo NAM signal
s(f, τ). To reduce the effect of these differences on NAM
recognition, noise superimposition process [16] is performed.
A pre-defined stationary noise signal is superimposed on the
detected NAM signals with a constant SNR, and then the
acoustic model for NAM recognition is developed using them
as the training data. In the recognition process, the same noise
signal is superimposed on the enhanced stereo NAM signal.

C. Frame-Wise Channel Selection Process
There are several choices to recognize the estimated stereo

NAM signal; e.g., a recognition process is performed in only
one pre-decided channel, or recognition processes are sepa-
rately performed in individual channels and then a recognition
result in either channel is selected using some measures. Since
the noise signal in each channel varies differently from each
other, the channel causing larger distortion of the enhanced
NAM signal also changes frame by frame. Therefore, it
is expected that a frame-wise channel selection process is
effective.
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Fig. 7. Difference of SNRs estimated frame by frame in individual channels
(i.e., SNR1,τ − SNR2,τ in Eq. (9)).

As the selection measure to detect the enhanced NAM signal
less distorted by GSS, a SNR is estimated frame by frame
based on the detected stereo mixed-signal x(f, τ) and the
estimated stereo noise signal n̂(f, τ) as follows:

SNRc,τ =10 log10

∑
f

|xc(f, τ)|2 −
∑
f

|n̂c(f, τ)|2

∑
f

|n̂c(f, τ)|2
. (9)

The channel with a higher estimated SNR is selected frame
by frame. Figure 7 shows an example of the difference of
estimated SNR trajectories of individual channels. Based on
the selection result, the acoustic feature sequences of the
enhanced NAM signals in individual channels are combined
into the single acoustic feature sequence.
There are other choices as selection measures, such as a

residual SNR using the noise suprressed signal, but a result
of our preliminary experiment showed that the SNR shown in
Eq. (9) yields the best recognition accuracy.

IV. EXPERIMENTAL EVALUATIONS
To investigate how much recognition accuracy is degraded

by the speaker’s movements and evaluate the effectiveness
of the proposed method, large vocabulary continuous NAM
recognition experiments were conducted.

A. Experimental Conditions
Stereo NAM data from a single Japanese male speaker

were recorded with two NAM microphones. The sampling
frequency was set to 16 kHz. To check how reasonable the
assumption in the mixing process given by Eq. (3) was,
we conducted two types of experimental evaluations. In one
evaluation, we used simulated mixed-signals generated by
superimposing the non-stationary noise signals, which were
detected when the speaker moved without speaking in NAM,
on the NAM signals, which were detected when the speaker
did not move. In the other evaluation, we used real mixed-
signals detected in a real situation where the speaker moved
while speaking in NAM. In generating the simulated mixed-
signals, power of the non-stationary noise signals was adjusted
so that the recognition performance for the simulated mixed-
signal was nearly equal to that for the real mixed-signal.

We adopted 12 MFCCs, 12 ΔMFCCs and Δ power as
the acoustic features. The DFT size, window size, and shift
size were set to 1024, 512, and 256, respectively. Left-to-
right 3 state triphone HMMs with no skip were used as an
acoustic model. The number of shared states was 2189 and
the state output probability distribution was modeled with
16 mixture components of GMMs. This acoustic model was
initially developed with normal speech database designed for
training speaker-independent model, which included voices
of several hundreds of speakers. Then, it was adapted to
the NAM signals without non-stationary noise using iterative
MLLR. The number of adaptation sentences was 208 and
the number of test sentences was 143 sentences. They were
selected from Japanese newspaper articles. We simultaneously
used the NAM signals in both channels (i.e., 416 utterances in
total) to develop a common acoustic model for both channels.
We used 60 k word trigram language model trained with
Japanese newspaper articles.
The following five settings were evaluated:
• Unprocessed : The mixed-signals without any noise sup-
pression processes were directly used.

• GSS : GSS using the time-averaged noise spectrum in the
noise-only segment was performed in each channel.

• Proposed BSSA : The proposed method using only BSSA
was performed.

• Proposed BSSA and selection : The proposed method
using both BSSA and frame-wise channel selection was
performed.

• Clean : NAM signal without suffering from non-
stationary noise was used.

In the methods using GSS (GSS, Proposed BSSA, and Pro-
posed BSSA and selection), a SNR of the superimposed noise
mentioned in Section III-B2 was set to 30 dB in both model
adaptation process and recognition process. The oversubtrac-
tion parameter and the exponential domain parameter in Eq.
(8) were set to 0.1 and 1/3, respectively. These settings were
experimentally determined so that the recognition performance
was maximized.

B. Experimental result

Figure 8 shows the result for the simulated mixed-signals.
The non-stationary noise causes substantial degradation in
word accuracy from 69.2% to 53.6% in the first channel
(ch1) and from 67.3% to 52.1% in the second channel (ch2).
The improvement in word accuracy by the conventional noise
reduction with a monaural signal (GSS) is observed but it is
limited (55.5% in ch1 and 52.9% in ch2) since this process
cannot suppress the non-stationary noise components. Pro-
posed BSSA yields significantly larger improvements in word
accuracy (61.4% in ch1 and 61.6% in ch2) compared with GSS
since the non-stationary noise estimation is performed by the
stereo signal processing. Moreover, frame-wise channel selec-
tion yields further improvement (63.3% of Proposed BSSA and
selection). There still remain the noticeable difference in word
accuracy between Proposed BSSA and selection and Clean
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Fig. 8. Result for simulated mixed-signals.

Fig. 9. Result for real mixed-signals.

because the diffuse noise components are essentially difficult
to be estimated.
Figure 9 shows the result for the real mixed-signals. Com-

pared with the result for the simulated mixed-signals, word
accuracy in Proposed BSSA significantly decreases (57.7% in
ch1 and 55.6% in ch2) and becomes close to that in GSS
(56.7% in ch1 and 54.6% in ch2). We have noticed that a
directivity pattern shaped by the beam former to suppress the
NAM signal, which is given by a part of the unmixing matrix,
has the deep null at around zero degree of the DOA in the
simulated mixed-signals but the null becomes much shallower
and its degree is slipped in the real mixed-signals. This is
because the assumption in the mixing process given in Eq. (3)
is not valid in a real situation; i.e., the speaker’s movements
also cause the change of the transfer function a(f). Conse-
quently, the estimation accuracy of the non-stationary noise
becomes low. Nevertheless, the estimated stereo noise signal
is still useful to perform the frame-wise channel selection that
yields the best word accuracy (58.6%), which is statistically
significantly better than the results of Proposed BSSA and GSS
in the second channel. In a real situation, we don’t know which
channel yields better word accuracy and it will vary depending
on the setting conditions of the NAM microphones. Therefore,
Proposed BSSA and selection capable of blindly selecting a
better channel is more effective than Proposed BSSA and GSS.

V. CONCLUSIONS

In this paper, we proposed the blind noise suppression
method for Non-Audible Murmur (NAM) recognition to alle-

viate the word accuracy degradation caused by non-stationary
noise generated by speaker’s movements during speaking.
Using a stereo signal detected with two NAM microphones,
the non-stationary noise was estimated with blind source
separation and independent component analysis, and spectral
subtraction was performed to enhance the stereo NAM signal.
Moreover, frame-wise channel selection was performed to con-
struct less distorted monaural NAM signal. The experimental
results demonstrated that the proposed method is capable of
significantly reducing the degradation in NAM recognition
accuracy caused by the speaker’s movements.
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