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Abstract

This paper describes a novel approach based on voice conver-
sion (VC) to speaker-adaptive speech synthesis for speech-to-
speech translation. Voice quality of translated speech in an out-
put language is usually different from that of an input speaker
of the translation system since a text-to-speech system is devel-
oped with another speaker’s voices in the output language. To
render the input speaker’s voice quality in the translated speech,
we propose a voice quality control method based on one-to-
many eigenvoice conversion (EVC) and language-dependent
prosodic conversion. Spectral parameters of the translated
speech are effectively converted by one-to-many EVC enabling
unsupervised speaker adaptation. Moreover, prosodic parame-
ters are modified considering their global differences between
the input and output languages. The effectiveness of the pro-
posed method is confirmed by experimental evaluations on
cross-lingual VC among Japanese, English, and Chinese.

Index Terms: speech-to-speech translation, speech synthesis,
speaker adaptation, eigenvoice conversion, prosodic conversion

1. Introduction

Speech-to-speech translation is an effective technique to make
it possible for us to communicate with each other beyond lan-
guage barriers. Voices of an input speaker of a speech-to-speech
translation system are translated into voices in an output lan-
guage with three main techniques, automatic speech recognition
(ASR), machine translation (MT), and text-to-speech (TTS) [1].
Voice quality of the translated speech is usually different from
that of the input speaker since a TTS system needs to be devel-
oped with voices of another speaker in the output language. It
is more effective if not only linguistic information but also non-
linguistic information such as speaker individuality is conveyed
by the translated speech.

To render the input speaker’s voice quality in the trans-
lated voice, cross-lingual speech synthesis techniques have been
studied. Recently a speech synthesis technique based on a hid-
den Markov model (HMM) [2] has attracted attention due to its
flexible framework capable of voice quality control with model
adaptation techniques. Unsupervised model adaptation and a
mapping of model (or adaptation) parameters between differ-
ent languages are essential techniques to achieve cross-lingual
speaker adaptation. King et al. [3] proposed an unsupervised
adaptation method based on a mapping of transforms between
triphone units to be used in recognition and fullcontext units to
be used in synthesis. Chen er al. [4] proposed a HMM state
mapping method between different languages exploiting bilin-
gual speech data sets. Gibson and Byrne [5] proposed a two-
pass decision tree clustering technique to effectively cope with
a model mapping problem and applied it to unsupervised model
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adaptation using a different language. These methods need a
decoding process to perform model adaptation since linguistic
units such as phonemes are used in the HMM. Therefore, the
effect of decoding errors on the adaptation performance needs
to be reduced.

As another approach, voice conversion (VC) techniques
have been studied. The most popular method is to define a con-
version function based on a Gaussian mixture model (GMM)
[6, 7], which is usually developed with a parallel data set con-
sisting of utterance pairs of source and target speakers. One
approach to cross-lingual VC is to produce a parallel data set
between speakers in different languages in some way. Abe et
al. [8] proposed the use of a TTS system to generate voices
in a different language based on a mapping of phoneme sets.
Mashimo et al. [9] proposed the use of bilingual speaker’s data.
Erro et al. [10] proposed to generate pseudo parallel data from
non-parallel data based on frame alignment between voices of
different languages.

Recently another approach to cross-lingual VC has been
proposed inspired by the model adaptation techniques. Eigen-
voice conversion (EVC) [11], one of the effective methods for
adaptive VC, uses multiple parallel data sets between a single
speaker and multiple speakers to effectively achieve unsuper-
vised adaptation of a GMM to an arbitrary speaker. Because
specific linguistic units are not used in the GMM, voices of any
language are straightforwardly accepted as adaptation data in
the unsupervised adaptation. Malorie et al. [12] applied EVC
to cross-lingual VC and reported its effectiveness.

In this paper, we propose VC techniques to develop
speaker-adaptive speech synthesis in speech-to-speech transla-
tion. The EVC technique is used to convert spectral param-
eters of the translated speech into those of the input speaker.
Moreover, to improve naturalness of the converted speech,
a language-dependent prosodic conversion method is used to
globally modify prosodic parameters considering their global
differences between input and output languages. The effec-
tiveness of the proposed methods is confirmed by several ex-
perimental evaluations assuming a speech-to-speech translation
process among Japanese, English, and Chinese.

2. One-to-Many Eigenvoice Conversion
2.1. Eigenvoice GMM (EV-GMM)

The joint probability density function (p.d.f.) of the source and
target feature vectors is modeled by the EV-GMM as follows:
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where the mean vector Y (w) is written as
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In one-to-many EVC, the target mean vector of the m™ mix-

ture component is represented as a linear combination of

a bias vector bl )(0) and representative vectors Bl =
[bg >(1),~~~ by )(J )], where the number of representa-

tive vectors is J. The J-dimensional weight vector w
[w(1),---,w(J)]" is adapted to an arbitrary target speaker
while the parameter set of the EV-GMM AEY) s tied over dif-
ferent target speakers.

2.2. Training

The tied parameter set of the EV-GMM is trained in advance
using the multiple parallel data sets consisting of the single
source speaker and many pre-stored target speakers. Let X
and Yis) be the feature vector of the source speaker and that
of the s pre-stored target speaker at frame t. Not only the
tied parameter set AEV) but also a set of the weight vectors
wi.s = {w, -+ ,wg} adapted to individual pre-stored target
speakers are optimized as follows:
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To enable maximum a posteriori (MAP) estimation in the
adaptation process, a prior p.d.f. of the weight vector is modeled
by a Gaussian distribution as follows:

P (w A7) = N (wi p), 715, )
where 7 is a hyper-parameter. A model parameter set A con-
sisting of the mean vector 1) and the covariance matrix X (*)
is estimated using a set of the weight vectors optimized for in-
dividual pre-stored target speakers in Eq. (3).

2.3. Unsupervised adaptation

The EV-GMM is adapted to an arbitrary target speaker by es-
timating the optimum weight vector for given speech samples
of the target speaker in a completely unsupervised manner, i.e.,
using neither parallel data nor linguistic information. For a time
sequence of the given target feature vectors Y, --- , Y/, the
MAP estimation of the weight vector is performed as follows:
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This adaptation process works reasonably well even if using
only one or two utterances since the number of adaptive pa-
rameters (i.e., the number of dimensions of the weight vector)
is small enough.

2.4. Conversion

Based on the adapted EV-GMM, the source feature vectors
are converted into the target feature vectors. The maximum
likelihood estimation method considering dynamic features and
global variance [7] is adopted in this paper.
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Figure 1: Proposed speaker-adaptive speech synthesis frame-
work for speech-to-speech translation system.

3. Cross-Lingual Speech Synthesis Based
on VC in Speech-to-Speech Translation

There are two main approaches to develop speaker-adaptive
speech synthesis in speech-to-speech translation: one is to
synthesize voices of the output language uttered by the input
speaker as truly as possible (e.g., presenting Japanese accented
English if the input speaker’s English is accented); and the other
is to synthesize voices of the input speaker in the output lan-
guage as fluently as native speakers. The use of bilingual data
would be essential in the former approach but it is not always
necessary in the latter approach. In this paper, we focus on
the latter approach and propose a novel approach based on VC
techniques without any bilingual data. A basic idea is to gener-
ate the input speaker’s voices in the output language by properly
mixing voices of various native speakers of the output language.

Figure 1 shows the proposed framework. First the input
speaker’s voice is translated into a text in the output language by
ASR and MT, and then speech parameters such as spectral and
prosodic parameters are generated by TTS. After that, spectral
parameters are converted with one-to-many EVC and prosodic
parameters are converted based on language-dependent proba-
bility distribution functions (PDFs). This proposed framework
has nice portability since it is straightforwardly applied to any
speech-to-speech translation system. If the TTS system gener-
ates only speech waveforms, a speech analysis process is nec-
essary to extract speech parameters from the generated output
waveform. In this paper, HMM-based speech synthesis is used
as the TTS system. Thanks to its parametric speech synthe-
sis framework, speech parameters generated from the translated
text are available to be used in one-to-many EVC without any
speech analysis process.

3.1. Spectral Conversion Based on One-to-Many EVC

The output speaker of a speech-to-speech translation system is
used as the source speaker and the input speaker of the system
(i.e., a user) is used as the target speaker to be adapted in one-
to-many EVC. First one-to-many EV-GMM is adapted into the
input speaker using only his/her voices input to the system. The
spectral parameter sequence generated by the TTS is converted
with the adapted EV-GMM so as to exhibit the input speaker’s
voice quality. An excitation parameter such as aperiodic com-
ponents may also be converted in the same manner using an-
other EV-GMM developed for such a parameter.

To train the EV-GMM, it is necessary to use multiple par-
allel data sets consisting of the speaker modeled by the TTS



system as the single source speaker and a lot of other speak-
ers as the pre-defined target speakers. However, it is laborious
work to collect those data sets. To address this issue, we use the
synthetic speech to create the parallel data. There exist speech
data of a lot of speakers with transcriptions available, for in-
stance, speech data used in acoustic model training for speech
recognition. Because the speaker of the TTS system is used
as the single source speaker in the proposed framework, it is
straightforward to develop the parallel data by generating the
single source speaker’s voices corresponding to individual ex-
isting speakers’ voices from their transcriptions.

3.2. Prosodic Conversion with Language-Dependent Prob-
ability Distribution Functions (PDFs)

In the proposed method, the prosodic parameters are globally
converted as follows:
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where p® and p¥) are a prosodic parameter of the source
speaker (i.e., the TTS output speaker) and that converted to
the target speaker (i.e., the input speaker of the translation sys-
tem), respectively. Parameters of this conversion function in-
clude mean values of the prosodic parameters for the source
and target speakers, ,u(z) and ,u(y), and standard deviation val-
ues for those speakers, o® and o). The parameters for the
source speaker, ™ and o™ are easily extracted in advance
using a large number of synthetic voices from the TTS system
or speech data used in voice building of the TTS system. The
parameters for the target speaker, u(y) and ¢, are extracted
from utterances input to the translation system.

Although the above process assumes that the parameters for
the target speaker are the same even if a language is different,
this assumption does not always hold. Namely, the prosodic pa-
rameters would depend on not only individual speakers but also
individual languages: e.g., the standard deviation value of F{
would be larger in a tonal language such as Chinese or Japanese
than that in a non-tonal language such as English.

To consider the effect of each language on the prosodic pa-
rameters, we propose a prosodic conversion method based on
language-dependent PDFs of those parameters. A speech cor-
pus including a lot of speakers in the input language and that
in the output language are separately used to extract language-
dependent features of the prosodic parameters. First, the mean
and standard deviation values, £(¥) and ¢, are calculated
speaker by speaker. Then, the PDF of each parameter for each
language is drawn using the calculated parameter values of all
speakers in the same language as follows:
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where z and X show a speaker-dependent parameter value
(' or o)) and its random variable in the input language,
respectively, and y and Y show those in the output language,
respectively. The p.d.f.s are given by fx(x) for the input
language and fy (y) for the output language. In conversion,
first we extract the mean and standard deviation values of each
prosodic parameter from the given input speaker’s voice. Under
an assumption that the following equation holds,

PY <y) = PX<a), &)
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those values for the input language are converted to those for
the output language as follows:

g = BV (Fx(a). (10)

Finally, the prosodic parameters generated from the TTS sys-
tem are globally converted using the conversion function by Eq.
(6) with the parameter values converted in Eq. (10) as u(y) and
o™ In this paper, we use log-scaled F{ as the prosodic param-
eter and its mean and standard deviation values are converted
using language-dependent PDFs.!

In the proposed method, we need to use speech data in-
cluding a lot of speakers in each language but we don’t have to
use bilingual data. It is easy to find those speech data available
rather than to develop bilingual data. However, the resulting
PDF is strongly affected by the number of available samples
(i.e., the number of speakers) in each language. To alleviate the
overfitting effect, the p.d.f. in each language is modeled by the
following constrained GMM,

M

_ 1 ()
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where M is the number of mixture components, (t,, and o, are
mean and standard deviation values of the m™ mixture compo-
nent, respectively, which are tied over different languages, and
,u(X )isa language-dependent bias tied over different mixture
components. Using this GMM for modeling the p.d.f. in each
language, the conversion process by Eq. (10) is simplified as

g o= a—p® 4, (12)
where ,u(X ) and /,L(Y) are bias terms for the input language and

the output language.

4. Experimental Evaluations
4.1. Experimental Conditions

Experimental evaluations on cross-lingual speech synthesis
were conducted assuming the speech-to-speech translation
among Japanese, English, and Chinese. One female speaker
was used in each language as the output speaker of each TTS
system. In training of one-to-many EV-GMM of spectral pa-
rameters for each language, 100 speakers (50 male and 50 fe-
male) were used as the pre-defined target speakers. The number
of mixture components and the number of representative vec-
tors of each EV-GMM were set to 128 and 99, respectively. In
training of PDFs of prosodic parameters for each language, 326
speakers (163 male and 163 female) in Japanese, 200 speakers
(100 male and 100 female) in English, and 540 speakers (270
male and 270 female) in Chinese were used. To minimize the
effect of different speaking styles on the prosodic parameters,
these speakers were selected from speech corpora of travel con-
versation. In conversion, 4 speakers (2 male and 2 female) in
each language were used as the input speaker (i.e., the target
speaker to be adapted) not included in the training data. Only
2 sentences for each speaker were used in adaptation and 40
sentences for each speaker were used in evaluation.

As a spectral parameter, the oth through 24th mel-cepstral
coefficients were used. As a prosodic parameter, log-scaled
Fo was used in the global conversion and its mean and stan-
dard deviation values were used as parameters converted with

'We also tried converting a duration parameter but we did not find
any significant improvements in naturalness of the converted speech.



1 1 = —=
-~
= 4
Zost Zost . ]
) 2
] ]
2 2
2061 2061 E
2 2
[} [}
2 2
T 0.4 504} ; 4
=} =1 N
g g :
=] - 5 ..
©o0.2¢ | = = Japanese | ©o0.2t N — = Japanese|]
I | — English ] | — English
¥ |-+ Chinese --+- Chinese
0 e 0 L=
44 48 52 56 6 0.1 0.2 03 04 0.5 0.6

Mean of log-scaled Fo ~ Standard deviation of log-scaled Fo

Figure 2: Language-dependent PDFs of prosodic parameters.

language-dependent PDFs. STRAIGHT [13] was used as a
speech analysis/synthesis method. The shift length was 5 ms.

Preference tests (XAB tests) of conversion accuracy for
speaker individuality and naturalness were conducted sepa-
rately. In the preference test of conversion accuracy for
speaker individuality, 1) the output voice without VC (w/o
VC), 2) the output voice converted with one-to-many EVC
and global prosodic conversion without considering language-
dependent differences (EVC+PC), and 3) the output voice con-
verted with one-to-many EVC and global prosodic conversion
using language-dependent PDFs (EVC+LDPC) were compared
with each other. In the preference test of naturalness, the lat-
ter two methods (EVC+PC and EVC+LDPC) were compared
with each other. After vocoded speech of the input speaker (in
the input language) was presented as a reference, a pair of the
output voices (in the output language) by different two meth-
ods was presented to listeners. In the first preference test, the
listeners evaluated which voice sounded more similar to the ref-
erence in terms of speaker individuality. In the other preference
test, the listeners evaluated which voice sounded more natural
as the output language voice. These tests were performed sep-
arately for each output language by the listeners whose native
languages were the same as the output language. The number
of listeners for each language was 10.

4.2. Experimental Results

The PDF of each parameter is shown in Figure 2. It can be
observed that the PDFs of the Fy mean value are similar to
each other among different languages but the PDFs of the F{
standard deviation values are quite different especially between
Japanese and the other two languages. In the preference tests,
these PDFs were modeled by the constrained GMMs. The num-
ber of mixture components was set to 2 for the F{, mean value
and set to 1 for the F{ standard deviation value.

Figure 3 shows preference scores on conversion accuracy
for speaker individuality and those on the naturalness. The one-
to-many EVC effectively generates synthetic speech of which
voice quality is similar to the input speaker over all language
pairs. Furthermore, the language-dependent prosodic conver-
sion yields significant improvements in naturalness of the con-
verted speech in the language pairs of which PDFs of Fj
standard deviations are quite different from each other (i.e.,
Japanese-English and Japanese-Chinese).

5. Conclusions

In this paper, we have proposed novel voice conversion tech-
niques to control voice quality of translated speech in speech-
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Figure 3: Results of subjective evaluations.

to-speech translation. In the proposed techniques, spectral pa-
rameters are converted with one-to-many eigenvoice conversion
and prosodic parameters are globally converted considering dif-
ferences of their probability distribution functions between dif-
ferent languages. Experimental results have demonstrated that
the proposed techniques are effective for developing speaker-
adaptive speech synthesis in speech-to-speech translation.
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