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ABSTRACT 

In this study, we propose increasing discriminative power on the 
maximum a posteriori (MAP)-based mapping function estimation for 
acoustic model adaptation. Based on the effective and stable learning 
advantages of MAP-based estimation, we incorporate a discriminative 
term and derive a new objective function. By applying the new 
function for online mapping function estimation, we developed 
discriminative maximum a posteriori (DMAP) linear regression 
(DMAPLR) and DMAP-based ensemble speaker and speaking 
environment modeling (DMAP-based ESSEM). We evaluate the 
DMAPLR and DMAP-based ESSEM on the Aurora-2 task in a 
supervised adaptation mode. The experimental results show that both 
DMAPLR and DMAP-based ESSEM consistently provide 
improvements over their ML-based and MAP-based counterparts 
irrespective of using one, two, or three adaptation utterances. From 
the improvements, we confirm the strong effect of increasing 
discriminative capability on the MAP-based mapping function 
estimation. Moreover, we verify that including multiple knowledge 
sources in the objective function can efficiently enhance model 
adaptation performance. When compared with the baseline result, 
DMAP-ESSEM achieves a 15.96% (9.21% to 7.74%) average word 
error rate (WER) reduction using only one adaptation utterance. 

Index Terms-Automatic speech recognition, MLLR, ESSEM, 
MAPLR, MAP-based ESSEM, discriminative training 

1.  INTRODUCTION 
Increasing discriminative power on acoustic models is known as an 
effective way to improve speech recognition performance under 
imperfect testing environments [1-3]. Many discriminative training 
(DT) methods have recently been proposed. These methods typically 
first define a particular objective function that measures the 
separation between parameters in the acoustic models. An 
optimization procedure is then performed on the objective function 
with the available training set to increase the separation between 
parameters. Popular examples include minimum classification error 
(MCE) [1], minimum phone error (MPE) [2], and soft margin 
estimation (SME) [3] methods. Because these DT methods target 
increasing parameter separations, we usually apply them to refine 
acoustic models after a maximum likelihood-based training.  

In addition to DT, model adaptation is another successful way 
to reduce acoustic mismatches between training and testing 
conditions. Model adaptation approaches usually adopt some 
transformation functions to characterize the environment mismatches. 
A particular optimization criterion is used to find the parameters of 
the transformation function with a set of adaptation data that contain 
acoustic information of the testing conditions. Maximum likelihood 
(ML) is a popular criterion for performing the optimization. 
Maximum likelihood linear regression (MLLR) [4] and ML-based 
ensemble speaker and speaking environment modeling (ESSEM) [5] 
are two successful examples for the ML-based model adaptation 
approaches. Though these ML-based approaches can provide 
satisfactory results when sufficient adaptation data are available, 
their performance may become unstable due to an over-fitting issue 
when the amount of adaptation data is too limited. To avoid over-
fittings, a class of approaches adopts prior knowledge and uses a 

maximum a posteriori (MAP) criterion to estimate transformation 
function. Corresponding to the previous two examples, their MAP-
based counterparts, maximum a posteriori linear regression (MAPLR) 
[6, 7] and MAP-based ESSEM [8], have been proposed. 

More recently, approaches combining the advantages of DT and 
acoustic model adaptation have been developed. Minimum 
classification error linear regression (MCELR) [9] and soft margin 
estimation-based linear regression (SMELR) [10] are proposed to 
refine transformation functions by increasing their discriminative 
power. In this paper, we propose increasing the discriminative 
capability on the MAP-based model adaptation methods by deriving 
a new objective function. We apply the new function on the two 
MAP-based approaches, MAPLR and MAP-based ESSEM, and 
develop discriminative MAPLR (DMAPLR) and discriminative 
MAP-based ESSEM (DMAP-based ESSEM), respectively. We 
evaluated DMAPLR and DMAP-based ESSEM on the Aurora-2 task 
[11] in a supervised adaptation mode. Experimental results indicate 
that both DMAPLR and DMAP-based ESSEM can provide clearly 
better performance than their MAP-based counterparts.  

In a previous study, a confidence score of a combination of 
likelihood and likelihood ratio (LR) has been used to extend the 
conventional speech recognizer to a hybrid decoder [12]. Because the 
score integrates multiple knowledge sources, the hybrid decoder 
provides better recognition results than the conventional decoder that 
uses either the likelihood or LR score alone. The proposed DMAPLR 
and DMAP-based ESSEM share a similar concept that adopts a 
combined score in the objective function to estimate transformation 
functions. To investigate the effect of using multiple knowledge 
sources, we designed another set of experiments. We compared the 
objective functions using a combined score, namely, DMAP-based 
approaches, versus using likelihood and LR scores alone (all these 
objective functions integrate priors to improve performance stability). 
Our experimental results indicated that the DMAP-based approaches 
do give better performance than the counterpart methods using 
likelihood or LR alone. This set of results confirmed that by 
incorporating multiple knowledge sources in the objective function, 
we can further enhance the model adaptation ability. 

2.  DISCRIMINATIVE MAP-BASED OBJECTIVE FUNCTION 
Typically, model adaptation techniques use a mapping function, G , 
to transform parameters in the original acoustic model sets, Ω , (Ω  
may include one or multiple sets of acoustic models) to a new set of 
acoustic models, Λ , that matches the testing condition by: 
                                        Λ G Ω   

If the transcription, , corresponding to the adaptation data, , is 
available, ML-based adaptation defines a objective function by: 

Ω Ω  

We estimate the parameters, , in the function, G , by:  

                           Ω  

The MAP-based model adaptation methods, on the other hand, use the 
following objective function: 
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          Ω Ω Ω  

We can calculate parameters, , in G  by the optimization of: 

                        Ω  

Many previous studies have verified that the likelihood ratio (LR) 
score can provide crucial discrimination information for acoustic 
modeling [1-3]. To calculate LR, we require competing lists to the 
phone/word units in the correct transcription, . In this study, we use 
N-best hypotheses by decoding adaptation utterances to obtain the 
competing units. Then, we define an LR-based objective function by: 

 

where λ  is a scaling factor that determines the weights of each of 
the N-best hypotheses, with λ , and  is the n-th 
competing phone/word sequence of the N-best lists.  

In this study, we derive a new objective function that combines 
the objective function of Eq-(4) and the objective function of Eq-(6): 

    Ω Ω  
Ω  

where  and  are weighting parameters. Accordingly, we estimate 
the parameters, , in the mapping function, G , by: 

       

3.  DISCRIMINATIVE MAPLR AND MAP-BASED ESSEM 
In this section, we present DMAPLR and DMAP-based ESSEM that 
use the objective function in Eq-(7) for estimating mapping function. 

 

3.1. Discriminative MAPLR 
 

When using the affine transformation as the mapping function, the 
environment structure, , in Eq-(1) only takes one set of acoustic 
models. For the m-th Gaussian in the acoustic model, we have: 
                                                  
where  is the augmented vector: ′,  is the i-th 
element of the m-th Gaussian component.  is the adapted mean 
vector. MLLR calculates the affine transformation, , by [4]: 

                                           
along with 

′  

 

where  is the t-th observation.  is the posterior probability at 
the t-th observation,  is the augmented mean vector, and is the 
i-th element of the covariance matrix of the s-th Gaussian, 
respectively.  indicates that the s-th Gaussian belongs to a 
target model in the correct transcription, .  

By using the combined score of Eq-(7) for the objective 
function, along with the N-best information, DMAPLR calculates the 
affine transformation, , also using Eq-(10), but with: 

′ ′  

λ ′  

 

 

where  represents the l-th Gaussian belonging to a competing 
model in the n-th N-best list, . From Eq-(7) to Eqs-(13) and (14), 
we set , , and , where  is a 
scaling factor that controls the weight of priors.  is the augmented 
mean vector, and  is the i-th element of the covariance matrix, for 
the l-th Gaussian. For the s-th Gaussian (from the correct 
transcription), we prepare hyper-parameters,  and , in the offline. 
With the calculated , we can adapt mean parameters by Eq-(9). 
 

3.2. Discriminative MAP-based ESSEM 
 

In our previous ESSEM study, we introduced several different types 
of mapping functions, G , in Eq-(1). Here, we present a linear 
combination function as an example. Other types of mapping 
function can be derived in a similar manner. For the ESSEM 
approach, an environment structure consisting of multiple acoustic 
model sets is taken for Ω  in Eq-(1). Accordingly, for the m-th 
Gaussian, we have an environment structure, Η , 
where  is the m-th mean vector for the p-th speaker and speaking 
environment. ESSEM calculates the adapted mean vector  by: 

                                      

We estimate the parameters of the linear combination function, , by:  

                    

If the ML criterion is used to calculate , we have:                         

′  

′  

For DMAP-based ESSEM, we also use Eq-(16) to calculate , while: 

′ ′  

λ ′  

′ ′  

λ ′  

Similarly, , , and ,  is a scaling 
factor.  and  are the environment structures, and  and  are 
the covariance matrices, respectively, for the s-th Gaussian and the 
competing l-th Gaussian. For the s-th Gaussian, we also prepare 
hyper-parameters, and , for its prior density. 

4.  EXPERIMENTS 
In this section, we first introduce the experimental setup. Then, we 
present experimental results of DMAPLR and DMAP-based ESSEM 
and their ML- and MAP-based counterparts. Finally, we compare the 
results of these approaches and discuss our findings.   
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4.1.  Experimental Setup 
 

We evaluated the proposed DMAPLR and DMAP-based ESSEM 
approaches on the Aurora-2 task [11]. The multi-condition training 
set in Aurora-2 was used to estimate acoustic models. This training 
set included 17 different speaking environments from the same four 
types of noise as in test SetA, at different SNRs: 5dB, 10dB, 15dB, 
20dB, and clean condition. By further dividing the training set by 
genders, we obtained training data for 34 different speaker and 
speaking environments. In this paper, we report performance on 50 
different conditions (ten noise types at five SNR levels: 0dB, 5dB, 
10dB, 15dB, and 20dB). Each speech frame was characterized by 39 
coefficients consisting of 13 MFCC with their first- and second-order 
derivatives. A cepstral mean subtraction (CMS) was performed for 
normalization. All digits were modeled by 16-state whole word 
hidden Markov models (HMMs) with each state characterized by 
three Gaussian mixture components. The silence and the short pause 
were modeled by three states and one state, respectively, with each 
state characterized by six Gaussian mixture components.  

In the experiments, we constructed an environment structure 
that consists of environment clustering (EC) and environment 
partitioning (EP) hierarchical tree structures [5] by using the training 
data. We first clustered the training data into C groups based on the 
EC tree. The root node comprised the entire set of training data. The 
second layer consisted of two nodes, each including training data for 
one gender. Then, each gender-specific cluster in the second layer 
was further divided into two clusters based on high/low SNR 
conditions. Therefore, the 34 training environments were classified 
into seven clusters (C=7). Then, we trained a representative HMM 
set for each EC cluster using the training data belonging to that 
cluster. Each representative HMM set was then used to build an EP 
tree structure to cluster mean parameters in the representative HMM 
set. Each EP tree had one root, three intermediate, and six leaf nodes. 
The weighted Euclidean distance was used as the distance measure 
between each pair of mean vectors. During adaptation, we estimated 
a mapping function for every EP node. Each mean vector searched 
for the EP node containing sufficient adaptation statistics and used 
its mapping function for adaptation. Along with the EC and EP 
environment structures, we also prepared a hyper-parameter set for 
each mean vector: hyper-parameters, , for the m-th Gaussian. 
The hyper-parameters were used to calculate mapping functions in 
Eqs-(13) and (14) and in Eqs-(19) and (20). Detailed information 
about the construction of the EC and EP structures and hyper-
parameter estimation can be found in our previous study [7, 8]. 

Each of the 50 testing conditions in Aurora-2 has 1001 speech 
utterances recorded from 104 speakers (52 male and 52 female). 
Each speaker pronounced nine to ten utterances, and these testing 
speakers did not participate in the training phase. We used the first 
three utterances as the adaptation set and the remaining six or seven 
utterances for the testing set. Accordingly, each testing condition 
included 312 (104×3) adaptation utterances and 689 (1001-312) 
testing utterances. For all the model adaptation experiments in this 
paper, we performed four steps on each testing speaker. First, we 
implemented a cluster selection (CS) to locate the best suitable EC 
cluster whose representative HMM set gave the highest likelihood 
for the speaker’s adaptation data. Second, with the located EC 
cluster, we conducted another searching process through its EP tree 
to choose an EP node with sufficient adaptation statistics. Third, 
with the chosen EP node, each mean vector was adapted using the 
mapping function for that EP node. Fourth, we used the adapted 
HMMs to decode the testing utterances from that same speaker. For 
each testing condition, we performed the above four steps 104 times 
and calculated an average WER of the overall results (from the 689 
testing utterances pronounced by the 104 testing speakers). 

 

4.2.  Experimental Results 
 

This section presents our experimental results. A baseline result is 
provided for comparison and listed as Baseline in the following 
discussion. To obtain this Baseline result, a CS process is first 
performed to find a representative HMM set. The selected HMM set 
is directly used for testing recognition without performing adaptation. 
 

4.2.1. Discriminative MAPLR 
Figure 1 reports average WERs of MLLR, DMLLR (discriminative 
MLLR), MAPLR, and DMAPLR (discriminative MAPLR). In a 
preliminary experiment, we tested performance using different 
combinations of , , and , in Eqs-(13) and (14). Here, we only 
present the setup that gives the best performance. Our setup in this 
set of experiments is: for MLLR, { =1.0, =0.0, =0.0}; for 
DMLLR, { =1.0, =0.0, =0.6}; for MAPLR, { =1.0, = 0.2, 

=0.0}; for DMAPLR, { =1.0, =0.2, =0.6}. In this study, we 
used a diagonal regression matrix for  in Eq-(9). Meanwhile, we 
set , and N=8 in Eqs-(13) and (14). Each result in 
Figure 1 shows an average WER over 50 testing conditions. 

From Figure 1, we can first see an obvious improvement by 
using the prior density ( A  to C ), and an additional clear gain is 
achieved by incorporating the discriminative term ( C  to D ) when 
using one, two, and three adaptation utterances. Next, we observe 
that though the improvement from MLLR to DMLLR is marginal 
( A  to B ), DMAPLR gives clear improvements over MAPLR ( C  to 
D ). This result indicates that by increasing discrimination on an ML-

based transformation estimation, the improvement may not be clear, 
especially when there is limited adaptation data (one adaptation 
utterance). However, by incorporating the discriminative term into 
the objective function, MAP-based estimation can gain clear benefits. 

 
Figure 1. WERs (%) with different numbers of adaptation utterances 

 

In real world applications, we are more interested in rapid 
adaptation with a very small amount of adaptation data. Therefore, 
we list the results of using one adaptation utterance in Table I. Each 
block in Table I shows an average WER over ten conditions, and the 
best result for each SNR condition (each column) is marked with 
bold font. In addition to the four tests in Figure 1, we design another 
setup { =1.0, =0.2, =1.0} and name it the maximum likelihood 
ratio linear regression (MLRLR) in the following discussion.  

From Table I, we observe that DMAPLR consistently provides 
lower WERs than not only Baseline but also the other four 
approaches over 0dB to 20dB conditions (only except SNR=10dB). 
Special note is made that DMAPLR uses a combined score of 
likelihood plus LR in the objective function, MLRLR uses LR alone, 
and MAPLR uses likelihood alone, wherein all three methods adopt 
prior density. Therefore, the improvements achieved by DMAPLR 
over MAPLR and MLRLR suggest that the combined score 
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incorporating multiple knowledge sources can further enhance affine 
transformation-based model adaptation methods. 

TABLE I. AVERAGE WER (%) FOR USING ONE ADAPTATION UTTERANCE  

SNR(dB) 20 15 10 5 0 Ave. 
Baseline 1.56 2.10 3.13 8.21 31.04 9.21 
MLLR 1.55 2.09 3.59 8.77 28.15 8.83 

DMLLR 1.55 2.09 3.60 8.75 28.12 8.82 
MAPLR 1.53 2.05 3.45 8.37 27.40 8.56 

  DMAPLR 1.51 2.03 3.41 8.16 26.94 8.41 
  MLRLR 1.55 2.05 3.21 8.30 27.99 8.62 

 
4.2.2.  Discriminative MAP-based ESSEM 
Figure 2 reports results of ML-based ESSEM, DML-based ESSEM, 
MAP-based ESSEM, and DMAP-based ESSEM. We use the same 
setups as that used in the previous experiment: for ML-based 
ESSEM, { =1.0, =0.0, =0.0}; for DML-based ESSEM, {  
=1.0, =0.0, =0.6}; for MAPLR, { =1.0, =0.2, =0.0}; for 
DMAPLR, { =1.0, =0.2, =0.6}. Similarly in this set of 
experiments, we set , N=8 in Eqs-(19) and (20). 

From Figure 2, we observe very similar phenomena to Figure 1 
for one, two, or three adaptation utterances: First, an obvious gain is 
obtained by incorporating the prior probability, ( A  to C ), and an 
additional improvement is achieved by enhancing discrimination, ( C  
to D ). Second, by increasing discrimination, MAP-based estimation 
can achieve more improvements ( C  to D ) than the ML-based 
estimation, ( A  to B ). We also reported the results of ESSEM using 
one adaptation utterance in Table II. In addition to the four results in 
Figure 2, we tested the maximum likelihood ratio-based ESSEM 
(indicated as MLR-based ESSEM) with { =1.0, =0.2, =1.0}.  

 
Figure 2. WERs (%) with different numbers of adaptation utterances 

 

Similar observations are obtained to that from Table I: DMAP-
ESSEM gives better performance than MAP-ESSEM, MLE-ESSEM, 
or MLR-based ESSEM consistently over almost all SNR conditions. 
The results again confirm that the objective function using a 
combined score performs better than those using individual scores. 
Comparing to Baseline, DMAP-ESSEM provides a performance 
improvement of 15.96% (9.21% to 7.74%) average WER reduction.  

TABLE II. AVERAGE WER (%) FOR USING ONE ADAPTATION UTTERANCE  

SNR(dB) 20 15 10 5 0 Ave. 
Baseline 1.56 2.10 3.13 8.21 31.04 9.21 

ML-ESSEM 1.31 1.73 2.96 7.87 26.06 7.99 
DML-ESSEM 1.30 1.74 2.94 7.91 26.02 7.98 
MAP-ESSEM 1.31 1.77 2.94 7.60 25.35 7.79 

DMAP-ESSEM 1.31 1.77 2.92 7.53 25.18 7.74 
  MLR-ESSEM 1.32 1.88 2.95 7.53 25.26 7.79 

5.  CONCLUSIONS 
We designed an objective function that uses a combined score of 
posterior probability and likelihood ratio. We used the proposed 
objective function to estimate mapping functions and developed 
DMAPLR and DMAP-based ESSEM. Compared to their ML-based, 
MAP-based, and MLR-based counterparts, DMAPLR and DMAP-
based ESSEM provide notable improvements in a supervised 
adaptation mode on Aurora-2. The results indicate that increasing 
discriminative capability can effectively enhance MAP-based model 
adaptation performance. Moreover, from the improvements, it is 
confirmed that by using multiple knowledge sources in the objective 
function, the adaptation performance can be improved. Comparing to 
our baseline, DMAP-ESSEM achieves a 15.96% (9.21% to 7.74%) 
average WER reduction using only one adaptation utterance. 

In the SME algorithm [3], a frame selection procedure is taken 
to improve the separations between parameters in acoustic models. 
In the future, we will incorporate that procedure into DMAPLR and 
DMAP-based ESSEM approaches. Meanwhile, some previous studies 
pointed out that by setting different weights for each λ  (n=1…N) in 
Eqs-(13) and (14), (19), and (20), the discrimination can be further 
increased. We will also explore that research direction in the future. 
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