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ABSTRACT 

We propose an environment population projection (EPP) approach for 
rapid acoustic model adaptation to reduce environment mismatches 
with limited amounts of adaptation data. This approach consists of 
two stages: population construction and projection. In the population 
construction stage, we apply a sampling scheme on the adaptation 
data to construct an environment population based on acoustic models 
prepared in the training phase. With this sampling procedure, the 
environment samples in the population characterize diverse acoustic 
information embedded in the adaptation data. Next, the projection 
stage estimates a function to map the environment population into one 
set of acoustic models that matches the testing condition. With a well-
constructed environment population, a simple projection function can 
enable the EPP approach to accurately characterize the testing 
environment even with a small amount of adaptation data. To 
examine the rapid adaptation ability of EPP, we used only one 
adaptation utterance and tested performance in both supervised and 
unsupervised adaptation modes on Aurora-2 and Aurora-2J tasks. It is 
found that EPP achieves satisfactory performance under both modes 
for both tasks. On the Aurora-2J task, for example, EPP gives a clear 
improvement of a 13.87% (8.58% to 7.39%) word error rate (WER) 
reduction over our baseline in the unsupervised adaptation mode.  

Index Terms—Stochastic matching, acoustic model adaptation, 
ensemble classification, environment population projection  

1.  INTRODUCTION 
For automatic speech recognition (ASR), enhancing performance 
robustness under training and testing mismatched conditions is a 
crucial task. Maximum likelihood (ML)-based model adaptation 
approaches have been proposed and shown strong ability to reduce 
such mismatch by adjusting acoustic model parameters to match the 
testing conditions. For these approaches, a mapping function is 
usually defined to characterize the mismatch, and the parameters in 
the function are estimated according to the available adaptation data 
based on the ML criterion. Successful methods include maximum 
likelihood-based stochastic matching algorithm [1] and maximum 
likelihood linear regression (MLLR) [2]. These ML-based methods 
can effectively characterize the environment mismatches when 
sufficient adaptation data with accurate transcription information are 
available. However, real-world ASR applications usually favor rapid 
model adaptation with small amounts of adaptation data with or even 
without correct transcription information. The insufficient adaptation 
samples along with possible imperfect transcriptions may deteriorate 
the ASR performance. Therefore, identifying ways to efficiently take 
advantage of the available adaptation data and to improve the 
transcription correctness is vital to the model adaptation capability.  

More recently, a cross-validation (CV) based approach has been 
proposed to estimate multiple acoustic model sets with a CV scheme 
to improve the decoding hypothesis and accordingly enhance the 
performance for unsupervised adaptation [3]. Some other approaches 
incorporate N-best list to obtain better decoding hypothesis for the 
unsupervised adaptation mode [4] and to increase the discriminative 
power for supervised adaptation [5]. Another class of approaches 
develops a confidence measure and performs adaptation using only 
samples with high confidence scores [6]. In this study, we propose an 
environment population projection (EPP) approach that takes a 

sampling procedure to effectively utilize the available adaptation 
data. As will be presented later, the proposed EPP approach provides 
satisfactory performance in both supervised and unsupervised modes.  

The EPP approach extends the ML-based stochastic matching 
algorithm by incorporating the ensemble classification concept [7]. 
In the implementation, EPP first performs a sampling procedure on 
the available adaptation data set to generate several adaptation data 
subsets. Each subset carries specific acoustic information embedded 
in the entire set of adaptation data. With these adaptation subsets and 
with acoustic models from the training phase, EPP calculates several 
environment-specific acoustic model samples. The ensemble samples 
then form an environment population. Finally, a projection function 
is estimated to map the environment population into one set of 
acoustic models that matches the testing condition.  

We further develop two schemes to improve the accuracy and 
diversity of the environment population. First, a specially designed 
sampling and resampling scheme is used as the sampling procedure 
to enhance the confidence level of each adaptation subset. Therefore, 
each environment sample can be estimated more accurately toward a 
specific acoustic condition. Second, to further increase the coverage 
of environment population, we prepare multiple acoustic model sets 
from the training phase instead of a single set. From our 
experimental results in both supervised and unsupervised modes, 
EPP gives better recognition performance not only than the baseline 
but also than the conventional bias compensation and MLLR with a 
further confirmation by significance testing. The improvements 
suggest that EPP possesses better model adaptation ability by taking 
advantage of important diverse information from the adaptation data 
that is usually averaged out in the conventional direct estimation 
approaches. The rest of this paper is organized as follows. Section 2 
introduces the EPP framework. Section 3 presents the 
implementation of EPP, and then section 4 shows the experimental 
setup and results. Finally, we provide our conclusions in section 5. 

2.  ENVIRONMENT POPULATION PROJECTION (EPP)  
In this section, we first review the ML-based stochastic matching 
algorithm and then introduce the proposed EPP approach.  

2.1. ML-based Stochastic Matching 
 

The ML-based stochastic matching algorithm [1] characterizes an 
unknown combination of speaker variability and environment 
distortions by a mapping function, G . By this mapping function, the 
original acoustic model, Λ , is transformed into a new acoustic 
model, Λ , that matches the testing condition:  

                                           Λ G Λ   

The parameters of the mapping function, , are estimated based on the 
speech utterances, , in an ML manner:  

Λ  

2.2. EPP Framework 
 

Figure 1 shows the EPP framework, which consists of two stages: 
Stage-1 prepares an environment population, and Stage-2 estimates a 
set of acoustic models that matches the testing condition. 
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2.2.1 Environment Population Construction 
For Stage-1, we first take a sampling and resampling scheme to 
generate S adaptation subsets. The scheme performs three steps on 
the available adaptation data of T speech frames. Step1 decodes the 
adaptation utterances to acquire state alignment and posterior 
probability for each frame. Step2 pools these T frame samples and 
randomly draws T’ (T’<T) frames without replacement from the T 
frames. Step3 resamples and draws (T−T’) frames from the T’ frames 
that are obtained in Step2. Finally, we collect T frames (same amount 
as the original adaptation set) for one adaptation subset. We perform 
the three steps S times and obtain S adaptation subsets. Moreover in 
Step3, we devise an additional procedure that draws more frames 
from the sample pool for those frames having higher posterior 
probabilities; frames with posterior probabilities lower than a certain 
threshold are removed from the subset. This procedure enhances 
confidence level of each adaptation subset. With the collection of S 
adaptation subsets, we calculate S sets of acoustic models by:   

 Λ Λ  

where Λ  and  Λ  are, respectively, the acoustic models from the 
training phase and transformed acoustic models using the s-th 
adaptation subset. We call  population construction function, and 
the parameters, , in are calculated by the ML criterion:  

                               Λ  

where   is the s-th adaptation subset. The ensemble S environment 
samples form an environment population, Θ Λ Λ Λ . We 
call this population constructed using information from adaptation 
data adaptation-phase environment (AE) population.   

Recently, a class of studies indicates that the diverse information 
from the training data provide crucial prior knowledge for model 
adaptation [8-10]. Here, we further include the training information 
by using multiple anchor model sets to increase the coverage of 
environment population. For the p-th anchor model, Λ , with the s-th 
adaptation subset, we obtain a new model, Λ , by a function, : 

    Λ Λ  

Similar to Eq-(2), we estimate the parameters, , in  by: 

                                Λ  

With P anchor models and S adaptation subsets, we get P×S samples 
and form an environment population, Θ Λ Λ Λ Λ . 
We name it training-adaptation-phase environment (TAE) population 
because both training and adaptation information are incorporated.  
 
 

 
 

          Figure 1: Environment population projection framework 

2.2.2. Environment Population Projection  
For Stage-2, we calculate a projection function, G , to map the 
environment population, Θ, to one set of acoustic models, Λ , by:  
              Λ G Θ  

We estimate the parameter set, , of the projection function, G , based 
on the ML criterion: 

                                   Θ  

3.  IMPLEMENTATION OF THE EPP APPROACH 
In this section, we introduce our implementation steps of the EPP 
approach. An affine transformation is used as the construction 
function, and a linear combination is adopted to be the projection 
function. We only consider adaptation on mean vectors in this study. 
To enhance adaptation accuracy, we design a hierarchical tree 
structure to cluster mean vectors in our EPP implementation. The 
leaf nodes are individual means in Λ , and each intermediate node 
contains a group of means. The top node includes the entire set of 
means. Before adaptation, we perform a searching procedure 
through the tree to locate a node (the c-th node in the following) that 
contains sufficient adaptation data for each mean vector. 
 

3.1. Construction Function Estimation   

When using an affine transformation as the construction function in 
Eq-(5), the estimation of parameters is equivalent to the MLLR 
transformation solution [2]. With the m-th mean  in the p-th 
anchor model, Λ , we intend to calculate  based on the s-th 
adaptation subset. If we know the m-th mean vector belonging to the 
c-th node, EPP estimates an affine transformation, Г , to perform:     
                                     Г  
where  is the augmented vector: ′ (each vector 
has D coefficients). We can calculate Г  by the ML criterion: 

Г
Г

Г ′Σ

Г  
where  is the t-th observation vector. Σ  is the covariance matrix, 
and  is the posterior probability of the k-th Gaussian that 
belongs to the c-th node.  is the sampling unit that generates the 
s-th adaptation subset. We set T’=0.7×T, and by the resampling step 
each adaptation subset has the same amount T frames as the original 
adaptation set. By collecting P×S means, we get a matrix, 

, as the population for the m-th Gaussian.  
 

3.2. Projection Function Estimation 
 

With the prepared environment population, we estimate a projection 
function to find the final acoustic models. From a previous study, we 
can have several projection function candidates [4]. In this paper, we 
choose a linear combination function as the projection function. For 
the m-th Gaussian, we first follow the searching process to determine 
a node (the c-th node) and then calculate the final mean vector, , 
that matches the testing condition by: 

     
where  is the coefficient vector of the linear combination function 
for the c-th node. Similarly, we calculate  using the ML criterion: 

′Σ  

The presented EPP implementation using affine transformation as 
the construction function and linear combination as the projection 
function is only an example. Other types of construction and 
projection functions can be implemented in a similar manner. 
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4.  EXPERIMENTS 
In this section, we first briefly introduce the experimental setup. 
Then, we present and discuss our experimental results. 
 

4.1. Experimental Setup 
 

We evaluated the EPP approach on two speech databases, Aurora-2 
[11] and Aurora-2J [12]. Aurora-2 is a well-known English 
connected digit recognition task that is often used to evaluate ASR’s 
noise robustness. Aurora-2J is a Japanese version digit recognition 
task and is designed to have the same structure as Aurora-2. Both 
tasks have two training sets, multi-condition and clean condition, and 
70 different testing conditions (ten noise types at seven SNR levels).  

In this paper, we use the multi-condition training sets for both 
the Aurora-2 and Aurora-2J tasks. For both tasks, the multi-condition 
training set includes 17 different speaking environments that are 
from the same four types of noise as in test SetA, at different SNR 
levels: 5dB, 10dB, 15dB, 20dB, and clean condition. In the following 
discussions, we report performance using 50 testing conditions (ten 
noise types at five SNR levels, 0dB, 5dB, 10dB, 15dB, 20dB). Each 
condition has 1001 utterances collected from 104 testing speakers 
(52 male and 52 female). Each speaker pronounced nine or ten 
utterances. The testing speakers did not participate in the training 
phase. Here, we report our results in average word error rate (WER).     

For both the Aurora-2 and Aurora-2J tasks, we used a modified 
ETSI advanced front-end (AFE) for feature extraction [13]. Every 
feature vector comprised 13 static plus their first and second order 
time derivatives. Meanwhile, we followed a complex back-end 
topology presented in [13] to train baseline hidden Markov models 
(HMMs). Each digit was modeled with 20 mixtures per state, and the 
silence and short pause were modeled with 36 mixtures per state. 

Because we focused on rapid model adaptation, only one 
utterance was used for adaptation. We tested EPP performance in 
both supervised and unsupervised adaptation modes on both Aurora-
2 and Aurora-2J tasks. Similar results were obtained for all the 
evaluations. Due to the limited space, we only report supervised 
experiments on Aurora-2 and unsupervised on Aurora-2J. For the 
supervised mode, we used the first single utterance to adapt model 
parameters for each speaker. The adapted model was then used to 
test recognition on the remaining eight or nine utterances from that 
same speaker. For each of the 50 testing conditions, we performed 
the adaptation and testing procedures 104 times and finally reported 
the average WER over 897 (1001-104) testing utterances. For the 
unsupervised mode, we conducted a per-utterance self-adaptation 
scheme: each testing utterance was first decoded into N-best lists; the 
N-best hypotheses were then used for adaptation. Finally, the adapted 
models were used to recognize the same testing utterance. 
Accordingly, each condition contained 1001 testing utterances.  

 

4.2. Experimental Results  
 

As mentioned in Section 3, we built a tree structure to facilitate 
model adaptation. For the Aurora-2 task, we prepared a three-layered 
tree structure (including root, intermediate, and leaf nodes) based on 
the distances between mean vectors in the Aurora-2 baseline HMM 
set. For all the experiments on Aurora-2 in the following discussions, 
we used this tree structure to perform model adaptation. In the same 
way, we built another three-layered tree for Aurora-2J and used the 
tree to conduct all the model adaptation experiments on Aurora-2J.  
 

4.2.1. Supervised Experiments 
First, we compare the EPP performance using different environment 
populations. In addition to AE and TAE, we designed another 
environment population by taking P anchor model sets in the training 
phase, Λ Λ Λ , and the original adaptation data set (without 
doing the sampling procedure) to calculate the new model set, Λ , by: 

                      Λ Λ  
where  

Λ  

Then, the ensemble P sets of transformed acoustic models form a 
population:Θ Λ Λ Λ . We call this population the training-
phase environment (TE) population. Here, we set P=5 by using five 
anchor HMM sets. In addition to the baseline HMM set, we prepared 
other four anchor HMM sets that represented four different acoustic 
characteristics in the training set, including anchor HMM sets for 
high SNR, low SNR, male speakers, and female speakers. 

Table I presents the EPP testing results using TE, AE, and TAE 
populations in a supervised adaptation mode on Aurora-2. To get the 
environment populations, EPP-AE used one anchor HMM set (the 
baseline HMMs) and 30 adaptation subsets (P=1,S=30); EPP-TE 
used five anchor HMM sets and the original adaptation utterance 
without sampling (P=5,S=1); EPP-TAE used five anchor HMM sets 
with six adaptation sampling subsets (P=5,S=6). In this set of 
experiments, we used the affine transformation as the construction 
function in Eq-(5) and the linear combination function as the 
projection function in Eq-(7). SetA, SetB, and SetC in Table I show 
the average WERs over 20, 20, and 10 conditions. We also list 
Baseline and MLLR results in Table I for comparison. For Baseline, 
we directly used the baseline HMM set to test recognition without 
performing adaptation. For MLLR, we performed MLLR adaptation 
to calculate new HMMs. Then, the testing utterances were tested 
recognition with the adapted HMM set.  It is noted that we can 
consider MLLR as EPP with (P=1,S=1) in this condition.  

From the results, we first observe that MLLR and EPP with any 
of the three populations can provide clear improvements over 
Baseline for all sets, especially SetC. Next, we observe that EPP-AE 
and EPP-TE give improvements over MLLR. The results indicate 
that either by using multiple adaptation subsets (S=1 to S=30) or by 
incorporating multiple training anchor models (P=1 to P=5), we can 
achieve better adaptation performance. When comparing EPP-AE 
with EPP-TAE, we see that by using a same number of environment 
samples (both are 30), EPP-TAE achieves better performance. 
Finally by comparing EPP-TE with EPP-TAE, we find that EPP-
TAE outperforms EPP-TE by using more adaptations subsets (S=1 to 
S=6). The results suggest that by including both training and 
adaptation information in the environment population, EPP can 
model the testing conditions more accurately. Compared to Baseline, 
EPP-TAE gives a 6.05% (6.45% to 6.06%) average WER reduction. 

TABLE I.  SUPERVISED MODE AVERAGE WER (%) ON AURORA-2 

Test Condition SetA SetB SetC Overall 
Baseline 5.88 6.70 7.08 6.45 

 MLLR(P=1,S=1) 5.74 6.57 6.53 6.23 
EPP-AE(P=1,S=30) 5.66 6.46 6.35 6.12 
EPP-TE(P=5,S=1) 5.57 6.56 6.26 6.10 
EPP-TAE(P=5,S=6) 5.50 6.49 6.33 6.06 

 
From Table I, the overall performance of EPP-TAE (S=6,P=5) seems 
only marginally better than that of MLLR(S=1,P=1) with an average 
WER reduction of 2.73% (6.23% to 6.06%). In this study, we further 
took a matched pair t-Test significance test [14] to verify the 
performance improvement. Because each SNR condition has ten 
results in the Aurora-2 test set, we conducted t-Test by ten pair-wise 
results. Instead of using a fixed threshold to determine the t-Test 
results, we directly present P-values of the matched pair t-Test. A 
small P-value indicates consistent performance improvements over 
ten results. We list the MLLR and EPP-TAE WER results along with 
P-values at different SNR condition in Table II. Each block in the 
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first three columns lists an average WER over ten different noise 
types. Each block in the fourth column lists a P-value of EPP-TAE 
versus MLLR. From Table II, small P-values are observed for almost 
every condition. This observation indicates that EPP-TAE is 
consistently better than MLLR for each particular SNR condition. 

TABLE II. SUPERVISED MODE WER (%) AND P-VALUES ON AURORA-2 

dB Baseline MLLR    EPP-TAE     P-value 
20 0.69 0.69 0.62 0.015 
15 1.19 1.17 1.10 0.070 
10 2.71 2.59 2.49 0.061 
5 6.79 6.55 6.41 0.047 
0 20.87 20.15 19.69 0.001 

All 6.45 6.23 6.06  
 

4.2.2. Unsupervised Experiments 
In this set of experiments, we intentionally used another function, 
bias compensation, as the construction function to test the EPP 
performance. The linear combination is still used as the projection 
function. When using a compensation bias, , Eq-(5) becomes: 
                                     
Similar to Eq-(10), we estimate the bias compensation for the p-th 
environment with given the s-th adaptation subset by : 

′ Σ

 
Table III reports the EPP results with three different environment 
populations in the unsupervised mode on Aurora-2J. We also list 
Baseline and Bias results for comparison. Similar to the supervised 
mode, for Baseline, we directly used the baseline HMMs to test 
recognition; for Bias, we used a bias compensation function to adapt 
HMMs and then decoded the same testing utterance using the 
adapted HMMs. From Table III, we observe similar phenomena to 
that from Table I. First, both Bias (P=1,S=1) and the three EPP 
setups give clear improvements over Baseline. Next, EPP-TAE 
achieves the best performance comparing to Bias and the other two 
EPP setups. For the overall testing conditions, EPP-TAE provides a 
13.87% (8.58% to 7.39%) average WER reduction over Baseline.  

TABLE III. UNSUPERVISED MODE AVERAGE WER (%) ON AURORA-2J 

Test Set SetA SetB SetC Overall 
Baseline 6.80 10.67 7.95 8.58 

Bias(P=1,S=1) 6.43 9.23 7.32 7.73 
     EPP-AE (P=1,S=30) 6.27 8.87 7.32 7.52 

EPP-TE (P=5,S=1) 6.24 8.85 7.34 7.50 
EPP-TAE(P=5,S=6) 6.20 8.67 7.22 7.39 

 
Similarly, we verify the performance improvements of EPP-TAE 
over Bias by using the matched pair t-Test. Table IV shows WERs 
and P-values at different SNR levels. We find similar observations to 
that from the supervised experiments: though the overall average 
improvement of EPP-ATE over Bias is 4.40% (7.73% to 7.39%), the 
small P-values listed in Table IV indicate that the improvements are 
consistent among ten results for each of the five SNR levels.  

TABLE IV. UNSUPERVISED MODE WER (%) AND P-VALUES ON AURORA-2J 

dB Baseline Bias EPP-TAE P-value 
20 0.49 0.41 0.36 0.035 
15 1.01 0.88 0.72 0.001 
10 3.12 2.56 2.25 0.019 
5 9.87 8.51 7.90 0.001 
0 28.39 26.28 25.73 0.017 

All 8.58 7.73 7.39  

5.  CONCLUSION 
We propose an EPP approach to perform rapid model adaptation for 
reducing environment mismatches. EPP uses a sampling scheme to 
prepare an environment population and then estimates a projection 
function to map the population to one set of acoustic models that 
matches the testing condition. We evaluated the EPP approach in 
both supervised and unsupervised modes on Aurora-2 and Aurora-2J 
tasks. To investigate the rapid adaptation capability of EPP, we used 
only one adaptation utterance for all the evaluations. We observed 
similar results from all the evaluations and reached three major 
conclusions:(1) EPP provides significant improvements over the 
baseline under both supervised and unsupervised modes; (2) EPP 
using affine transformation or bias compensation as the construction 
function can give better performance than their direct estimation 
counterparts; (3) Incorporating additional training information by 
using multiple anchor model sets in the training phase can enable 
EPP to achieve even better performance. In the future, we will 
explore other sampling schemes and the correlation between number 
of samples and achievable performance. Moreover, other types of 
construction and projection functions will be further studied. 
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