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ABSTRACT
Korean is an agglutinative language that does not have explicit word
boundaries. It is also a highly inflective language that exhibits severe
coarticulation effects. These characteristics pose a challenge in de-
veloping large-vocabulary continuous speech recognition (LVCSR)
systems. Many existing Korean LVCSR systems attempt to over-
come these difficulties by defining a set of “word” units using mor-
phological analysis (rule-based) or statistical methods. These ap-
proaches usually require a great deal of linguistic knowledge or at
least some explicit information about the statistical distribution of
the units. However, exceptions or uncommon words (e.g., foreign
proper nouns) still exist that cannot be covered by rules alone. In
this paper, we investigate the use of an unsupervised, nonparametric
Bayesian approach to automatically determining efficient units for
a Korean LVCSR system. Specifically, we utilize a Dirichlet pro-
cess model trained using Bayesian inference through block Gibbs
sampling. Our approach provides a principled way of learning units
without explicit linguistic knowledge or any static parameters. Ex-
periments were conducted on a travel domain corpus, which includes
many foreign words and proper nouns. In our experiments we com-
pared our method to a set of state-of-the-art baseline systems that
relied on either morphological analysis or segmentation heuristics.
Our system was able to produce a considerably more compact set
of “word” units than the best baseline system (the lexical dictionary
was approximately half the size), with a recognition accuracy 5.89%
higher in terms of the relative word error rate than the best baseline
system.

Index Terms— Korean language, large-vocabulary continu-
ous speech recognition, unsupervised segmentation, nonparametric
Bayesian approach, Dirichlet process model, Gibbs sampling.

1. INTRODUCTION

Most state-of-the-art large-vocabulary continuous speech recogni-
tion (LVCSR) systems typically choose words as the basis for recog-
nition units. This is basic for Indo-European languages (e.g. En-
glish), since the number of word forms is relatively small, and the
boundaries between adjacent words are clearly separated by a white
space. However, this choice becomes problematic in languages that
do not have explicit word boundaries like Korean. Although a space
exists in the Korean writing script, it is used to separate two adjacent
word-phrases (eojeol), which generally correspond to two or three
words in English in a semantic sense. This word-phrase is repre-
sented by one or more Hangul characters of an orthographic syllable
(eumjeol) unit, where in a linguistic sense it is basically an agglom-
erate of morphemes. This agglutinative process may combine one
or more stem morphemes with one or more functional morphemes
(e.g., tenses, suffixes, or honorifics). Consequently, there may be

thousands of distinct eojeol that can be generated from a given word
root depending on their usage. Thus, developing a LVCSR sys-
tem with eojeol as the basic recognition unit leads to high language
model perplexity and out-of-vocabulary (OOV) rates. On the other
hand, choosing an eumjeol as the basic recognition unit results in
high acoustic confusability because of the severe phonological phe-
nomena and coarticulation effects. A more detailed discussion of
Korean phonological phenomena can be found in [1, 2].

Many existing Korean LVCSR systems attempt to overcome
these difficulties by creating a set of new units that lie between these
two eojeol and eumjeol units. One response is to choose a morpheme
as a basic recognition unit, and this approach has often been used in
many agglutinative languages [3, 4]. One study [5] shows that this
morpheme-based approach still requires an additional cross-word
phone variation lexicon to deal with the severe coarticulation prob-
lem. Another study [6] has proposed merging several morphemes
into a basic unit and defining it as a word. Starting from the original
morpheme units defined in Korean morphology, pairs of short and
frequent morphemes are merged into larger units by combining both
rule-based and statistical methods. Another method [7], is to de-
termine appropriate vocabulary units using a data-driven approach
in which the consecutive units are merged based on the frequency
of their pronunciation transition. However, these approaches either
require a great deal of linguistic knowledge or at least some explicit
information about the statistical distribution of the units which is
often difficult to estimate for uncommon foreign words or proper
nouns.

This paper investigates the use of an unsupervised, nonparamet-
ric Bayesian approach to automatically determine efficient word-
units for Korean LVCSR systems. Specifically, we utilize a Dirichlet
process model [8] trained using Bayesian inference through block
Gibbs sampling [9]. This unsupervised approach has been known in
Bayesian statistics for more than three decades, but has only recently
gained attention in the natural language processing field [10, 11, 12].
Consequently, investigations into its use for improving LVCSR per-
formance are still very rare. The advantage of this approach is that
it provides a principled way of learning units without explicit lin-
guistic knowledge, while controlling the efficiency level of the reso-
lution, which corresponds to unit distribution in the data. The term
“nonparametric” here means that the model does not have a fixed
set of parameters. It naturally generates a compact set of units with-
out the overfitting problems typically encountered when using max-
imum likelihood training. Thus, in this study, the number of Korean
units is learned along with their identities. To properly model the
phonological phenomena and coarticulation effects of the units, we
apply the proposed approach to joint sequences consisting of Korean
orthography together with its pronunciation.
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In the following sections, we describe the Bayesian Dirichlet
process model and the inferencing process using Gibbs sampling.
Then, details on the experiments are presented in Section 4 and con-
clusions are drawn in Section 5.

2. BAYESIAN DIRICHLET PROCESS MODEL
2.1. The General Framework
A Dirichlet process is a prior used in nonparametric Bayesian models
of data [8]. It is a stochastic process that can be thought of as a
probability distribution whose domain is itself a random distribution.
Each draw from a Dirichlet process is itself a distribution. We denote
a Dirichlet process as DP (α,G0) with two arguments: α and G0,
where α ∈ R is called the concentration parameter, and G0 is a base
distribution.

Assuming we are required to determine K random variables θ =
[θ1, θ2, ..., θK ], where each θk is distributed according to G, and G
itself is a random measure drawn from a Dirichlet process

θk|G ∼ G

G|α,G0 ∼ DP (α,G0) (1)

Intuitively, G0 is basically the mean of the DP and thus E[G] = G0,
while α controls the variance of G. The larger α is, the smaller the
variance, and the DP will concentrate more of its mass around the
mean or in other words G will be similar to G0.

To determine each θk, we never deal with G directly, since it
is represented by an infinite-dimensional Dirichlet distribution. In-
stead, we sample from G by casting the problem as a Chinese restau-
rant process (CRP) [13]. In this paradigm, one considers a restau-
rant having an infinite number of tables, each with infinite seating
capacity. Every customer who enters the restaurant chooses a table
according to the following random process

P (θk|θ−k) =
n(θk) + αG0(θk)

N + α
, (2)

where N is the number of customers so far, n(θk) is the number of
customers already sitting at the kth table and G0(θk) is the proba-
bility of generating a new table θk. In this process,

• The first customer always chooses the first table.

• The nth customer chooses:

– a new or the first unoccupied table with probability
αG0(θk)
N+α

, or

– the occupied table θk with probability
n(θk)
N+α

.

Finally, the probability of the sequence of random variables θ =
[θ1, θ2, ..., θK ] is obtained by the product of K observations:

P (θK1 ) ≈
K∏

k=1

P (θk|θ−k) (3)

2.2. DP Model for Determining Korean LVCSR Units
Applying the DP model for our Korean LVCSR task, we focus on
the determination of the Korean “word” unit sequence given a joint
sequence 〈c, p〉 of Hangul characters of the Korean orthographic syl-
lables (eumjeol) sequence c = [c1, c2, ..., cN ] and the correspond-
ing phonemic syllables of the actual pronunciation sequence p =
[p1, p2, ..., pM ]. In most cases, the length of eumjeol sequence is
equal to the length of the phonemic syllables (M = N ). Thus, we
can simplify our task by defining the joint sequence as a tuple of
〈c, p〉 = [〈c, p〉1, ..., 〈c, p〉N ], where the goal is to determine word
units W 〈c, p〉 = [W1〈c, p〉, ...,WK〈c, p〉].

Following the theoretical framework described in the previous
section, random variables θk are currently our Korean “word” unit

Wk〈c, p〉, and G is a discrete probability distribution over all possi-
ble word units according to a Dirichlet process prior. The restaurant
tables in the CRP paradigm correspond to the generated lexical en-
tries, and the seating arrangement thus specifies a distribution over
Korean “word” units with each customer representing one token unit.
The base distribution G0 is the prior probability over words and α
controls the generation of novel word units (to avoid overfitting prob-
lems). Here, we use a spelling model that assumes that the word unit
Wk〈c, p〉 with word length L has a Poisson distribution with a mean
λ. The probability of a new word unit Wk〈c, p〉 is therefore assigned
according to the following distribution:

G0(Wk〈c, p〉) = λL

L!
e−λu−L

(4)

where u is the vocabulary size of all eumjeol character-pronunciation
tuples 〈c, p〉 in the document.

3. GIBBS SAMPLING INFERENCE

After defining our generative model, it is important to determine the
posterior distribution P (H|Θ) of our hypothesis H given the data
corpus Θ. However, it is generally impossible to find the most likely
segmentation of Korean LVCSR units from among all possible seg-
mentations given the data using exact inference in our nonparametric
Bayesian model, because the hidden variables of the word segmen-
tation do not allow for exact computation of the integrals.

Instead, we apply a block-wise version of Gibbs sampling, as
motivated by the work in [11]. Gibbs sampling is one of the sim-
plest Markov chain Monte Carlo (MCMC) algorithms [14], in which
word segmentations are repeatedly sampled (in this case, block-wise
for each sentence) from their conditional posterior distribution given
the current values of all other variables in the model. The sampling
algorithm for our study is shown in Alg. 1.

Algorithm 1: The block Gibbs sampling algorithm

foreach i=1 to NumIterations do
foreach sentence s ∈ randperm(S) do

if i > 1 then
Remove customers of W 〈c, p〉 exist in s from Θ

end
Generate all possible candidates W 〈c, p〉 in s;

foreach candidate W 〈c, p〉 do
Compute probability P (W 〈c, p〉|Θ) using DP

model (Eq. 2-4)

end
Draw W 〈c, p〉 according to P (W 〈c, p〉|Θ);
Add customers of W 〈c, p〉 to Θ

end
end

In practice, block-wise sampling is done for each eojeol to avoid
segmentations that cross word-phrase (eojeol) units. The computa-
tion of the probability of all possible P (W 〈c, p〉|Θ), as well as the
sampling of W 〈c, p〉 according to P (W 〈c, p〉|Θ), is implemented
using the forward filtering/backward sampling (FFBS) dynamic pro-
gramming algorithm [11, 12]. The FFBS algorithm operates directly
on the segmentation graph (each node represents a set of partial seg-
mentation hypotheses, and each arc is labeled with the probability
of adding a segment to the set hypotheses), and has two steps. The
forward filtering step, calculates for each node in the graph the to-
tal probability of a subgraph leading to that node. The backward
sampling step samples a derivation of the P (W 〈c, p〉|Θ) according
to P (W 〈c, p〉|Θ), using values stored in the graph by the forward
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filtering process. The sampling procedure is performed backwards
staring from the sink node of the graph, and the procedure is applied
recursively on the tail of each sampled arc until the source node of
the graph is reached. A more detailed explanation of the application
of the FFBS algorithm to bilingual sequence co-segmentation can be
found in [12].

4. EXPERIMENTAL EVALUATION
4.1. Corpora
The experiments were conducted on the travel domain using the Ko-
rean Basic Travel Expression Corpus (BTEC) [15] which contains
many foreign words and proper nouns (eg. names of famous places,
restaurants or streets). The BTEC text material used for training
consists of about 900,000 sentences. The available BTEC speech
material, which has been developed by the Electronics and Telecom-
munication Research Institute (ETRI) in Korea, only contains 510
BTEC sentences spoken by 40 speakers (20 males, 20 females). We
therefore used it for evaluation.

The training speech material used was based on the large-
vocabulary continuous Korean speech database developed by the
Speech Information Technology and Industry Promotion Center
(SiTEC) [16]. It consists of: (1) phonetically-balanced sentences
selected from a large Korean text corpus that contain high frequency
morphemes; and (2) dictation application sentences containing
words and morphemes of high frequency that were generated for a
dictation application. There are about 200 speakers (100 males, 100
females) for the phonetically-balanced sentences and 800 speakers
(400 males, 400 females) for the dictation application sentences.
Each speaker uttered about 100 sentences, resulting in a total of
100,000 utterances (about 70 hours of speech). Orthographic tran-
scriptions annotated with pronunciation were available for the whole
corpus.

4.2. Baseline LVCSR System
A sampling frequency of 16 kHz, a frame length of a 20-ms Ham-
ming window, a frame shift of 10 ms, and 25 dimensional feature pa-
rameters consisting of 12-order MFCC, Δ MFCC and Δ log power
were used as feature parameters. The full Korean phoneme set, as
defined in [17], contained a total of 40 phoneme symbols. These
consisted of 19 consonants and 21 vowels (including nine monoph-
thongs and 12 diphthongs). One silence symbol was added during
acoustic model training. Three states were used as the initial hidden
Markov model (HMM) for each phoneme. Then, a shared state HM-
net topology was obtained using a successive state splitting (SSS)
algorithm based on the minimum description length (MDL) criterion
to gain the optimal structure in which triphone contexts are shared
and tied at the state level. Details about MDL-SSS can be found
in [18]. The resulting context-dependent triphone model had 2,231
states in total with an optimum 15 Gaussian mixture components
per state. The decoding engine is a time-synchronous Viterbi beam
search system that operates on a Weighted Finite State Transducer
(WFST) search space [19]. Thus, all components were compiled into
C ◦L◦G, a recognition cascade, where C is the context-dependency
acoustic model, L is the lexicon dictionary and G is the language
model.

A number of different LVCSR units were explored and investi-
gated for our baseline system: (1) U1-ChrBase is based on syllable
eumjeol units; (2) U2-WrdBase is based on the “word” unit gener-
ated by a morphological analysis tool and a morpheme dictionary;
and (3) U3-PhrBase is based on word-phrase eojeol units. To take
into consideration the phonological phenomena and coarticulation
effects on the units, we also constructed a joint sequence model that
used tuple units consisting of Korean orthography together with its

Table 1. The dictionary size and the perplexity of trigram language

models based on various different LVCSR units

Dictionary Size LM Perp. (OOV)
U1-ChrBase 4,524 11.2 (0%)

U2-WrdBase 52,718 30.3 (<0.5%)

U3-PhrBase 216,030 263.1 ( 5%)

U4-ChrPair 4,524 11.6 (0%)

U5-WrdPair 52,718 31.8 (<0.5%)

U6-PhrPair 216,030 267.4 ( 5%)

DP100-WrdPair 23,963 35.6 (<0.1%)

DP300-WrdPair 23,826 36.2 (<0.1%)

Fig. 1. Character accuracy of the baseline LVCSR systems.

pronunciation: (4) U4-ChrPair is based on a tuple unit of syllable
eumjeol units together with phonemic syllables of the actual pro-
nunciation; (5) U5-WrdPair is based on tuple units of the “word”
unit generated by the morphological analysis tool and the morpheme
dictionary together with its pronunciation; and (6) U6-PhrPair is also
based on tuple units of the word-phrase eojeol unit together with its
pronunciation. The dictionary size and the perplexity of the trigram
language models are summarized in Table 1.

The performance of the baseline system with different LVCSR
units is shown in Fig. 1. Since each system has a different basic unit
length, only the character accuracy of each system is presented here.
The performance of the baseline U3-PhrBase outperformed both the
U1-ChrBase and U2-WrdBase baselines, because it has longer units
that are likely to reduce the acoustic confusability. However, it is
difficult to use this baseline system in real applications because of
its high perplexity and OOV rates. The use of tuple units consist-
ing of Korean orthographic units together with their pronunciation
improved system performance further: the best baseline system was
the U5-WrdPair, which achieved 91.55% character accuracy.

4.3. Proposed LVCSR System
Using the same amount of training text material, we trained our
DP model and extracted the resulting new “word” units from the
DP segmentation of the data. The convergence of the algorithm
during training procedure is shown in Fig. 2, which plots the log-
probability of the sampled derivation at the end of each pass through
the training corpus (iteration) against the iteration number. It can
be seen from the graph that the system rapidly improves from the
poor initial segmentation, and thereafter continues to gradually im-
prove. In this study, we took two different samples of corpus seg-
mentation hypotheses from iterations 100 and 300, and used their
co-segmentations to build a joint sequence model based on tuples of
the new “word” units together with their pronunciation. These sys-
tems are denoted DP100-WrdPair and DP300-WrdPair, respectively.

When integrating these models into the LVCSR system, the fea-
ture parameters and acoustic model are identical to the baseline.

4666



The lexicon dictionary and language model are generated based on
DP100-WrdPair or DP300-WrdPair. The dictionary size and the per-
plexity of the trigram language models for both DP100-WrdPair and
DP300-WrdPair are summarized in Table 1. The performance of
the proposed system in terms of both character accuracy and word
accuracy in comparison with the best baseline system U5-WrdPair
is shown in Fig. 3. Additionally, we also include U5b-WrdPair in
which we reduced the U5-WrdPair dictionary size by selecting only
the most frequent words. The results show that by reducing the dic-
tionary size of the baseline system, the performance dropped from
83.71% to 81.56%. However, the proposed approach produced a
model with half the number of lexical units of that provided by the
morphological analysis tool, whilst at the same time improving the
recognition accuracy of the LVCSR system. The best proposed sys-
tem is DP300-WrdPair, which was able to provide a 16.86% relative
word error rate reduction over U5b-WrdPair given the same dictio-
nary size, and a 5.89% relative word error rate reduction over U5-
WrdPair (the best baseline system).

Fig. 2. The evolution of the log-probability of the Gibbs sampled
derivation with respect to training iteration.

Fig. 3. Character and word accuracy of the proposed LVCSR system
in comparison with the best baseline system.

5. CONCLUSION

In this paper, we propose a novel method of determining Korean
LVCSR units in unsupervised manner using a non-parameteric
Bayesian approach. Specifically, we utilize a Dirichlet process
model trained using Bayesian inference through block Gibbs sam-
pling. This approach provides a principled way of learning units,
whilst controlling model complexity and avoiding the overfitting is-
sues typically associated with maximum likelihood approaches. To
model phonological phenomena and the coarticulation between the
units, we apply the proposed approach to tuple sequences consisting
of Korean orthographic units together paired with their pronun-
ciation. Experiments were conducted on a travel domain corpus
that included many foreign words and proper nouns. The results
clearly expose the key advantages of our approach. First, in terms
of model complexity, our technique yields a model with far fewer
parameters than the baseline systems: the number of lexical units
in the model being about one half of those produced by any of the

baseline systems. Secondly, in terms of the recognition accuracy
of the LVCSR system: the proposed system was able to achieve a
16.86% relative word error rate reduction over U5b-WrdPair given
the same dictionary size, and a 5.89% relative word error rate re-
duction over U5-WrdPair (the best baseline system). The final
advantage of our approach is that the entire segmentation process
is performed automatically in an unsupervised manner from two
token sequences. It relies on no explicit linguistic knowledge, and
should therefore be applicable to other languages with little or no
modification, removing the need for morphological analysis tools
for segmentation.
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