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ABSTRACT
In this study, we evaluate our proposed methods for enhancing
alaryngeal speech based on statistical voice conversion techniques.
Voice conversion based on a Gaussian mixture model has been ap-
plied to the conversion of alaryngeal speech into normal speech
(AL-to-Speech). Moreover, one-to-many eigenvoice conversion
(EVC) has also been applied to AL-to-Speech to enable the recovery
of the original voice quality of laryngectomees even if only one
arbitrary utterance of the original voice is available. VC/EVC-based
AL-to-Speech systems have been developed for several types of
alaryngeal speech, such as esophageal speech (ES), electrolaryngeal
speech (EL), and body-conducted silent electrolaryngeal speech
(silent EL). These proposed systems are compared with each other
from various perspectives. The experimental results demonstrate
that our proposed systems yield significant enhancement effects on
each type of alaryngeal speech.

Index Terms— alaryngeal speech, speech enhancement, voice
conversion, eigenvoice conversion, performance evaluations

1. INTRODUCTION
Laryngectomees who have undergone total laryngectomy due to
an accident or laryngeal cancer cannot produce speech sounds in a
conventional manner because their vocal folds have been removed.
Therefore, they require an alternative speaking method to produce
speech sounds using sound sources generated in a special manner
without vibrating their vocal folds. The produced speech is called
alaryngeal speech.

There are various methods of producing alaryngeal speech. In
this study, we focus on the three types of alaryngeal speech shown
in Fig. 1: esophageal speech (ES), electrolaryngeal speech (EL), and
body-conducted silent electrolaryngeal speech (silent EL). ES and
EL are the most popular types of alaryngeal speech in Japan. In
ES, alternative excitation sounds are generated by releasing gases
from or through the esophagus. Thus, ES can be produced without
any equipment. However, it is difficult to learn the skills to pro-
duce ES. On the other hand, EL is produced using an electrolar-
ynx, a medical device for mechanically generating the sound source
signals that are conducted into the oral cavity from the skin on the
lower jaw. It is much easier to learn how to speak using the elec-
trolarynx than to learn how to produce ES. However, because the
electrolarynx needs to generate sufficient loud-sound source signals
to make the produced speech sufficiently audible, sound source sig-
nals are easily emitted outside, disturbing speech communication.
To resolve this issue, a speaking method for silent EL has been pro-
posed [1]. A new sound source unit is used to generate less audible
sound source signals. Since the produced speech also becomes less
audible, it is detected with a non audible murmur (NAM) micro-
phone, which is a body-conductive microphone capable of detect-
ing extremely soft speech from the neck below the ear. These three
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Fig. 1. Methods of producing three types of alaryngeal speech (ES,
EL, and silent EL).

types of alaryngeal speech allow laryngectomees to produce speech
sounds again. However, their sound quality and intelligibility are
severely degraded compared with those of normal speech uttered
by non-laryngectomees. Moreover, alaryngeal speech sounds are
of similar quality regardless of the speaker. This problem is called
degradation of speaker individuality.

As one of the techniques for effectively changing voice quality
while keeping linguistic contents unchanged, statistical voice con-
version (VC) has been studied for around two decades [2, 3, 4]. In
particular, speaker conversion based on a Gaussian mixture model
(GMM) [3] has been widely studied and its performance has been
significantly improved [4]. A GMM of the joint probability density
of acoustic features between a source speaker’s voice and a target
speaker’s voice is trained in advance using parallel data consisting
of dozens of utterance pairs of the source and target speakers. The
trained GMM is capable of converting the acoustic features of the
source speech to those of the target speech in a probabilistic manner.
Moreover, to make the training process more flexible, one-to-many
eigenvoice conversion (EVC) [5] has been proposed as a method of
converting a single speaker’s voice into an arbitrary speaker’s voice.
This method enables us to control the speaker individuality of the
converted speech by manipulating a small number of parameters or
by automatically adjusting them to an arbitrary target speaker using
only a few target speech samples as adaptation data.

To effectively enhance alaryngeal speech, we have proposed
an alaryngeal speech enhancement method that converts alaryngeal
speech into normal speech using VC techniques. The proposed
method is called alaryngeal speech-to-speech (AL-to-Speech) [6, 7].
AL-to-Speech yields significant improvements in speech quality
since the converted speech is basically generated according to the
statistical properties of the acoustic features of normal speech.
Moreover, to enable flexible control of the converted voice quality,
one-to-many EVC has also been applied to the conversion of AL-
to-Speech [6]. EVC-based AL-to-Speech allows laryngectomees to
recover their original natural voice quality even if only one arbitrary
utterance of their natural speech is available. Using these techniques,
we have preliminarily developed AL-to-Speech systems for ES, EL,
and silent EL [8].

In this paper, we describe our proposed AL-to-Speech systems
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based on VC/EVC for individual types of alaryngeal speech and
evaluate their effectiveness. A comparison between VC and EVC
in AL-to-Speech and a comparison among individual AL-to-Speech
systems are conducted from various perspectives. The enhancement
effects of the individual systems are demonstrated from the experi-
mental results.

2. ALARYNGEAL SPEECH
2.1. Esophageal speech (ES)
ES sounds more natural than other types of alaryngeal speech. Addi-
tionally, a speaker skilled in producing ES can control prosody using
residual organs. However, a spectral envelope varies more unsta-
bly than that in normal speech. Moreover, specific unnatural sounds
caused at producing the excitation sounds are often observed. Even
if we can perceive pitch information in ES, it is difficult to directly
extract F0 patterns corresponding to pitch patterns from ES because
excitation signals are less periodic. We have found that pitch in-
formation is also perceived in an ES sample resynthesized from a
mel-cepstrum sequence including power coefficients and noise ex-
citation. Therefore, it is expected that pitch information of ES is
included in a spectral envelope.

2.2. Electrolaryngeal speech (EL)
EL sounds mechanical owing to artificial excitation signals. Al-
though a spectral envelope stably varies according to each phoneme,
it is distorted by the sound source signals leaked from the electro-
larynx. The electrolarynx used in this paper generates sound source
signals with almost constant F0 values and a high periodicity. Ex-
citation parameters such as F0 and aperiodic components are easily
extracted from EL but are less informative since they capture only
the acoustic characteristics of the artificial excitation signals.

2.3. Body-conducted silent electrolaryngeal speech (silent EL)
Silent EL sounds much more unnatural than EL owing to its lower-
powered sound source signals and body conduction. It basically has
similar acoustic characteristics to EL except that 1) the signal-to-
noise ratio of silent EL is much lower than that of EL and 2) a severe
attenuation of high-frequency components over 3 or 4 kHz is induced
by the lack of radiation characteristics from the lips and by the effect
of the low-pass characteristics of the soft tissue.

3. AL-TO-SPEECH
In AL-to-Speech, the spectrum, aperiodic components, and F0 of
the target normal speech are independently estimated using GMMs
or eigenvoice GMMs (EV-GMMs) from the spectrum of alaryngeal
speech. To eliminate unstable fluctuations observed in a spectrum se-
quence of alaryngeal speech and to compensate for a spectral struc-
ture collapsed by the production mechanisms of individual alaryn-
geal speech, a segment feature vector extracted from multiple frames
around a current analyzed frame is used as the input feature. We use
three joint static and dynamic feature vectors of the spectrum, aperi-
odic components, and F0 extracted from target normal speech as the
output features.

In this section, we describe AL-to-Speech based on one-to-many
EVC. This method entails a training, adaptation, and conversion pro-
cess. The details of AL-to-Speech based on VC are shown in ref. [6].

3.1. Training process
As conversion models for estimating spectrum and aperiodic com-
ponents of normal speech from the spectral segment of alaryngeal
speech, EV-GMMs are trained using multiple parallel data sets con-
sisting of utterance pairs of a laryngectomee and many prestored tar-
get speakers. Let us assume a source spectral segment feature vector,
Xt, and a target joint static and dynamic feature vector, Yt, at frame

t. The EV-GMM models the joint probability density of the source
and target feature vectors as;
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where w = [w(1), · · · , w(J)]� is the target-speaker-dependent
weight vector for controlling target voice quality. � denotes the
transposition of the vector. λ(EV ) is a canonical EV-GMM param-
eter set consisting of the weight αm, the mean vector μ(X)

m , the

covariance matrix Σ
(X,Y )
m , the bias vector bm, and the eigenvec-

tors Am = [am(1), · · · ,am(J)] for the mth mixture component,
where the number of eigenvectors is J .

The EV-GMM is adapted to a new target speaker by adjusting
the weight vector so that the marginal likelihood for given target
speech features is maximized [5]. This adaptation process is ef-
fective if speaker-dependent characteristics are well captured by
short-term features, such as spectrum and aperiodic components.
On the other hand, it is essentially difficult to control speaker-
dependent characteristics captured by long-term features, such as F0

patterns. Therefore, instead of the EV-GMM, a well-trained speaker-
dependent GMM is used to estimate F0 patterns from the spectral
segment sequence of alaryngeal speech. In AL-to-Speech for ES,
to develop the GMM for estimating F0 patterns corresponding to
the perceived pitch information of ES, we use F0 values extracted
from normal speech uttered by a non-laryngectomee as an imitating
prosody of ES in the training as the output features [6]. To develop
a GMM for F0 estimation in EL and silent EL, speaker-dependent
GMMs are separately trained for all prestored target speakers. Then,
the GMM achieving the highest F0 estimation accuracy is manually
selected.

3.2. Adaptation and conversion processes
Assuming that a few speech samples uttered by laryngectomees
before undergoing total laryngectomy are available as adaptation
data, the EV-GMM is flexibly adapted to the target voice quality by
automatically determining the weight vector in a text-independent
manner [5]. The weight vectors of the EV-GMMs for the spectral
and aperiodic estimations are independently estimated using the
spectral features and the aperiodic components extracted from the
given target speech samples. The converted spectral feature vectors
and aperiodic components are independently estimated using the
adapted EV-GMMs. On the other hand, in the F0 estimation, the
global speaker-dependent characteristics of F0 patterns are simply
controlled. A log-scaled F0 sequence is first estimated with the
selected speaker-dependent GMM, and then further converted so
that its mean μx and standard deviation σx are equal to those of the
adaptation speech data, μy and σy , as follows:

log yt =
σy

σx
(log xt − μx) + μy, (3)

where xt and yt denote the F0 value estimated with the GMM
and the converted F0 value at frame t, respectively. The maxi-
mum likelihood estimation method considering not only the explicit
relationship between static and dynamic features, but also global
variance [4], is adopted in the estimation of the converted features.

4. EXPERIMENTAL EVALUATION
4.1. Experimental conditions
We recorded 50 phoneme-balanced sentences of ES uttered by one
Japanese male laryngectomee, those of EL and silent EL uttered by
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another Japanese male laryngectomee, and those of normal speech
uttered by each of 40 Japanese non-laryngectomees. The speech
data of 30 non-laryngectomees were used for training and those of
the other 10 non-laryngectomees were used as the target data for
evaluation. From the 50 recorded sentences of each speaker, 40 were
used as the training or adaptation data and the remaining 10 were
used as the test data. The sampling frequency was set to 16 kHz.

The 0th through 24th mel-cepstral coefficients were used as
spectral parameters. Mel-cepstrum analysis [9] was employed for
alaryngeal speech and STRAIGHT analysis [10] was employed for
normal speech. The frame shift was 5 ms. To extract the spectral
segment feature of ES, current and ±8 frames were used for spectral
and aperiodic estimation and current and ±16 frames were used
for F0 estimation. For EL and silent EL, current and ±8 frames
were used for each parameter estimation. These frame lengths were
preliminarily optimized. As the source excitation features of normal
speech, we used log-scaled F0 values and aperiodic components for
designing mixed excitation.

The EV-GMMs for spectral and aperiodic component estima-
tion were trained for each type of alaryngeal speech. The numbers
of eigenvectors and mixture components were set to 29 and 64 in
every EV-GMM, respectively. The EV-GMMs were adapted to the
target speakers using 1, 2, 4, 8, 16, or 32 utterances of their normal
speech data. For AL-to-Speech based on VC, the GMMs for spec-
tral and aperiodic estimation were trained using a parallel dataset
for each type of alaryngeal speech and normal speech of each tar-
get speaker. The number of training utterance pairs was set to 1, 2,
4, 8, 16 or 32. The number of mixture components was optimized
manually depending on the training data size. Individual speaker-
dependent GMMs for F0 estimation were trained for all the 40 non-
laryngectomees. The GMM yielding the most natural F0 pattern was
then selected by listening to the converted speech. The same F0 es-
timation process was performed for the EVC-based AL-to-Speech
and VC-based AL-to-Speech.

4.2. Objective evaluation
We evaluated the effectiveness of AL-to-Speech based on EVC/VC
for each type of alaryngeal speech with root mean square error
(RMSE) on aperiodic components. The result of mel-cepstral dis-
tortion is shown in ref. [8]. Figure 2 shows RMSE on aperiodic
components as a function of the number of adaptation utterances
used in EVC or of utterance pairs used in VC. EVC shows a signif-
icantly smaller RMSE than VC in each type of alaryngeal speech
enhancement when the amount of the target normal speech data
is small. Even if only one arbitrary utterance of the target normal
speech is available in EVC, its conversion performance is almost
equivalent to or better than that of VC using 16 parallel utterance
pairs. It is also observed that ES yields the best conversion accuracy
and silent EL yields the worst among the three types of alaryngeal
speech. Note that similar results have been observed in mel-cepstral
distortion [8].

We also evaluated the F0 estimation accuracy in AL-to-Speech
for each type of alaryngeal speech using F0 correlation coefficient
and Unvoiced/Voiced (U/V) error between converted speech and tar-
get normal speech. To demonstrate the F0 estimation accuracy for
various speakers in AL-to-Speech, the results calculated using indi-
vidual speaker-dependent GMMs for the 40 non-laryngectomees are
shown in Table 1. For ES, the results for another non-laryngectomee
who uttered normal speech so that its pitch sounded similar to that
of ES are also shown as ”ES pitch.” ES yields the best estimation ac-
curacy among the three types of alaryngeal speech. Additionally, the
estimation accuracy is significantly improved using the GMM devel-
oped with the normal speech, the F0 patterns of which correspond

Fig. 2. RMSE on aperiodic components as a function of the number
of utterances of target normal speech (i.e., utterance pairs in VC or
adaptation utterances in EVC).

Table 1. F0 estimation accuracies for various target speakers using
corresponding target-speaker-dependent GMMs

Correlation U/V error [%]

ES 0.58 12.39 (V → U : 6.59, U → V : 5.80)
EL 0.40 13.20 (V → U : 4.92, U → V : 8.28)

Silent EL 0.42 14.02 (V → U : 6.89, U → V : 7.13)

ES pitch 0.68 8.36 (V → U : 4.30, U → V : 4.05)

well to the pitch patterns of ES.
The final results for the 10 target non-laryngectomees from the

test data are shown in Table 2. The GMM for ”ES pitch” was used in
ES enhancement, and manually selected speaker-dependent GMMs
were used in the ES/silent EL enhancement. Namely, the speaker
used in the model training is different from the target speakers. It
is observed that, for EL and silent EL, the estimation accuracy of
the selected GMMs is higher than that of various speaker-dependent
GMMs shown in Table 1, even though a speaker different from the
target speakers is used in the training. To generate a natural F0 pat-
tern in AL-to-Speech, it is useful to select an optimum speaker for
training rather than to directly use the same speaker as the actual tar-
get speaker since the F0 estimation accuracy largely varies among
different speakers. It is also observed that ES enhancement yields
better F0 correlation than the others.

4.3. Subjective evaluation
We conducted opinion tests of speech quality and intelligibility. In
the opinion test of intelligibility, 8 listeners evaluated 9 types of
speech including original alaryngeal speech and converted speech
with AL-to-Speech based on VC/EVC in ES, EL, and silent EL. The
VC-based AL-to-Speech used 32 utterance pairs for GMM training.
On the other hand, only one utterance was used as adaptation data for
the EVC-based AL-to-Speech. Each listener evaluated 135 speech
samples. The experimental conditions for the opinion test of speech
quality are shown in ref. [8]. We also conducted a preference test
to evaluate speaker individuality. In the preference test, 6 listeners
evaluated 6 types of speech consisting of converted speech by the
VC/EVC-based AL-to-Speech in EL, ES, and silent EL. The train-
ing data used in VC and the adaptation data used in EVC were the
same as those used in the opinion tests.

Figures 3 and 4 show the results of the opinion tests of speech
quality and intelligibility, respectively. All the AL-to-Speech meth-
ods yield significant improvements in speech quality compared with
that of the original alaryngeal speech. The speech quality of the en-
hanced silent EL is lower than that of the enhanced ES and enhanced
EL but it is significantly higher than that of each type of original ala-
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Table 2. F0 estimation accuracies for actual target speakers in eval-
uation using well-trained speaker-dependent GMMs

ES pitch 0.62 13.88 (V → U : 10.70, U → V : 3.18)
EL 0.51 12.05 (V → U : 7.13, U → V : 4.92)

Silent EL 0.45 13.78 (V → U : 8.92, U → V : 4.86)

Fig. 3. Result of opinion test of speech quality. ”Org”, ”VC”, and
”EVC” show original alaryngeal speech, converted speech by AL-to-
Speech based on VC trained with 32 utterance pairs, and converted
speech by AL-to-Speech based on one-to-many EVC adapted with
one utterance of target speech, respectively.

ryngeal speech. The intelligibilities of ES and silent EL are also
improved by AL-to-Speech. On the other hand, the intelligibility of
EL slightly degrades from that of the original EL by AL-to-Speech,
as observed in our previous work [7]. The speech quality and in-
telligibility enhanced by the EVC-based AL-to-Speech are almost
equivalent to those enhanced by the VC-based AL-to-Speech. Note
that the EVC-based method requires only one arbitrary utterance of
the target normal speech whereas the VC-based method requires 32
utterance pairs of alaryngeal speech and the target normal speech.

Figure 5 shows the result of the preference test. We can ob-
serve the same tendency as that in Fig. 2. Enhanced ES yields the
best speaker individuality and enhanced silent EL yields the worst
among the three types of alaryngeal speech. We can observe that the
VC-based methods slightly outperform the EVC-based methods in
ES and EL. This tendency depends on the amount of available par-
allel data used for GMM training in VC-based methods, as shown in
Fig. 2.

5. CONCLUSIONS
In this paper, we evaluated our proposed statistical enhancement
methods based on voice conversion techniques (AL-to-Speech) for
three types of alaryngeal speech: esophageal speech (ES), electro-
laryngeal speech (EL), and body-conducted silent electrolaryngeal
speech (silent EL). The experimental results suggested that 1) the
proposed methods significantly improve the speech quality of each
type of alaryngeal speech, 2) the proposed methods also improve the
intelligibilities of ES and silent EL, 3) AL-to-Speech based on eigen-
voice conversion (EVC) is capable of effectively adjusting the voice
quality of enhanced speech to the target voice quality using only one
arbitrary utterance of the target voice, and 4) AL-to-Speech for ES
is the best in terms of speech quality, intelligibility, and speaker in-
dividuality.
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