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Simultaneous speech translation
and its evaluation

Y. Kano+, “Simultaneous Neural Machine Translation with Prefix Alignment,” IWSLT 2022
R. Fukuda+, “NAIST Simultaneous Speech-to-speech Translation System for IWSLT 2023,” IWSLT 2023
Y. Kano+, “Average Token Delay: A Latency Metric for Simultaneous Translation,” Interspeech 2023
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Our SimulS2S System [Fukuda+ 2023 IWSLT]
Input English Output Japanese
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Prefix Alighment [Kano+ 2022 IWSLT]

* Induce prefix-to-prefix translation pairs from parallel corpora

Sentence pair

| bought a pen.
FElIIREZE -7,

Full-sentence
MT (pretrained)

Source prefix

Prefix translation

Full-sent. MT (from n-best)

Matched prefix

NAIST.

An induced target prefix is used as a
fixed (forced-decoded) target prefix




Results

* SimulMT model trained 3o- o smsseceon o
using the prefix pairs et L et
outperformed other i I AR AT
methods (En-De) - 2 §°°.:'°. & o

* The advantage is I o PAo
smaller in En-Ja; PA B e L Moo
failed to induce enough /f o MU
short prefix pairs that | #- v follsentence
hElpS SimulMT 0.0 2.5 5.0 7.5 100 125 150 175

AL
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IWSLT Evaluation Campaignh — SimulST track

* History
» 2020: text/speech-to-text, En-De
* 2021-2022: text/speech-to-text, En-De/Ja/Zh
» 2023: speech-to-text/speech, En-De/Ja/Zh
 2024: TBA

* Regulations
* Use publicly-available speech/language resources
* Configure SimulST systems to satisfy given latency limits
* Submit systems in forms of Docker images

NAIST.



Automatic Evaluaiton in IWSLT 2023

Quality Latency

Average Lagging (AL) and variants (LAAL, DAL)

Speech-to-text BLEU Average Propotion (AP)
Average Token Delay (ATD)

ASR-BLEU Start/End Offset

speech-to-speech | * g rcer Average Token Delay (ATD)

*Please find more details in the overview paper (archived in ACL Anthology)
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Average Lagging (AL)

* Average delay from the ideal policy through the diagonal
line in a read-write chart

Target— Target—
g X ¢ ¥
c c
a a
(¢) o
! i
v \ 4
1 2 3 4 5 6 7 8 9 10 12 3 4 5 6 7 8 9 10111213

NAIST. *Figures are from Ma+ (2019, ACL)



Unintuitive Latency Measurement by AL

* Latency can be negative for outputs with long chunks

Target (write) = Target (write) =

& (pead) @24nos
& (pead) @224nos
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Average Token Delay (ATD) [Kano+ 2023 Interspeech]

* Inspired by Ear-Voice Span (EVS) in interpretation studies

Target (write) - Time -

sl s2 s3 s4 s5 s6 s/ s8 s9

Chunkl from s1-2 tl t2 t3 t4 t5

Chunk2 from s3 t6

Chunk3 from s4 t7

Chunk4 from s5 t8

& (peads) 92unos

Chunk5 from s6-9 t9
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Average Token Delay (ATD) [cont’d]

* Measure the diff. btw. the end of input chunk and the

corresponding output tokens

* Delays are always positive

* The largest difference from AL

* AL ighores the output duration
 ATD takes it into account;

* A long outputs can cause further

delay in later outputs
* Differences are measured by # tokens (text)

or actual time (speech)
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Results in Computation-aware Latency

* In real situations, SimulST systems pose some delays due to
their computations
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NAIST-SIC (Simultaneous Interpretation Corpus)

* A collection of Simultaneous Interpretation
* https://dsc-nlp.naist.jp/data/NAIST-SIC/
* You can (easily) find by searching “NAIST-SIC”
* A part of this corpus (NAIST-SIC 2021) was used for IWSLT

Simutaneous Translation shared task
* It was also presented at IWSLT 2021

* Doi et al., Large-Scale English-Japanese Simultaneous Interpretation Corpus:
Construction and Analyses with Sentence-Aligned Data, Proc. IWSLT 2021.

* An additional release (NAIST-SIC 2022) includes automatic
source-target sentence alignment
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https://dsc-nlp.naist.jp/data/NAIST-SIC/2021/

Robustness of discrete prompts
for pre-trained models

Y. Ishibashi+, “Evaluating the Robustness of Discrete Prompts,” EACL 2023

NAIST.



Prompt-based Problem Solving

* E.g., Natural Language Inference (NLI)

[Hypothesis] [Prompt] |

fine-tuning (MP)

~

<MASK>

 [Premise]——>

Manually-written k

Pre-trained

~

Masked LM
\_ /

orompts and AutoPrompt (AP)
(found through gradient-

guided search)

Discrete Prompts
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Robustness of Discrete Prompts

* In this work, we evaluated the following on the NLI task:

* Robustness against perturbations on discrete prompts

* Token reordering (shuffling)

* Token deletion

* Robustness against different datasets
* Qut-of-domain data
* Perturbed data

NAIST.



Experimental Results (1/2)

- Token reordering

CommitmentBank MultiNLI
o 21%4 3% ., 10%d 9% Larger drop in AutoPrompt;

g Zij l “AP relies on token (word)
g J l order more than MP”
AP
- Token deletlon
MP
20 - ~ \1 Even a single word deletion
28 T may hurt manually-written
0 T prompts seriously
Position of the deleted prompt token
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Experimental Results (2/2)

- Out-of-domain data (cross-dataset evaluation)

CB->MNLI

MNLI->CB x
0o A7%Y el 126 3%y X Larger drop in MP;

j l l “MP does not generalize well”

Accuracy

MP

- Evaluation data perturbation (rewrite hypotheses and labels)
CB MNLI
100 22%< o 56%y 100 3%V 14%4, X Larger drOp |n MP;

75 l “MP may overfit with specific
J data distribution”

50
 m
0
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Adaptive and efficient speech
segmentation for speech
translation

R. Fukuda+, “Speech Segmentation Optimization using Segmented Bilingual Speech
Corpus for End-to-end Speech Translation,” Interspeech 2022

+ Recent progress (not published yet)

NAIST.



Background: Speech Segmentation

Segmentation is a fundamental process required for Speech Translation (ST).
 Splitting continuous speech into translation units (segments).

* It’s difficult because explicit boundaries such as punctuation marks are not available.
* It’s important because it greatly affects translation results.

Proper segmentation segment
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Improper Segmentation
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I love I 1dogs but I’m allergic to dogs

I \
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CIJNLP 2023 (November 11th, 2023)



Previous Approaches to Speech Segmentation

* Pause-based * Model-based

* \Voice Activity Detection (VAD) * |[dentify segment boundaries
using a classifier model

silence

31.31s 34.56 s
¢ Le n gt h = b a S e d : input speech frames
, ; \4
Segmentation
Frame Classifier
) 205 a 205 i ..111100000000000000000001.. < |

output binary labels
for each frame

* Pause-Length Hybrid
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Problem

* Inefficiency due to passive
segmentations

Previous work (SHAS)
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* Probablistic divide-and-
conqguer [Tsaimas+ 2022 Interspeech]

pi€1[0,1] po P1 P2 P3 P4 .
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wav2vec 2.0

LA O O O O

et

Sthatdb
W argmin(probs
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Terminate when
segment falls below a
certain length

Hierarchical /y\EI x&,
segmentation * & *



Proposed Method

* Thresholding segmentation
probability

* Smoothed by moving average

* Fine-tuning wav2vec 2.0
Transformer layers

[ Transformer Encoder ]
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Experimental Results

* Higher BLEU on MuST-C ende * More efficient than SHAS
MuST-C segmentation 26.99 27
27.0 -~ X 26.99
SHAS [Tsiamas+ 2022] | 25.67 . D
Proposed 26.30 2 260 R o . ’Ae’ff?; [
* Derives shorter segments 250 o
4 s mpDAC  ApSTRM e pTHR
A o pTHR+MA X Oracle
| |||||||| ||| 0 60 65 70 75 80 85 90 95 100 105 110 115 120
ST mference time (s)
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Summary

* NAIST’s recent activity on simultaneous speech translation
* Prototype SimulST system
* Prefix Alignment
* Average Token Delay
* MQM-based human evaluation

* Recent results in IWSLT evaluation campaign

* Simultaneous Interpretation Corpus: NAIST-SIC

NAIST.



